Is there an interesting way to define a continuous composition of functions?

Stephen Tashi
Science Advisor
Homework Helper
Education Advisor
Messages
7,864
Reaction score
1,602
People have found ways to extend the definition of some operations that are ostensibly discrete (such as differentiation - e.g. 1st, 2nd, 3rd derivatives) to operations that are defined for fractions ( e.g. fractional derivatives). Is there an interesting way to extend the operation of composing two functions to define such a fractional operation?

There are trivial ways. For example, the 0-th composition of f with g could be f(x). The 1st order composition could be f(g(x)). The 1/3 rd order could be (1/3) f(x) + (2/3) f(g(x)). But one could make a similar definition for almost any discrete operation and that sort of thing isn't very compelling.

In a recent thread on nested functions, it has been pointed out that there are many ways to define sequences of functions recursively such that the sequences converge to the identity function. If you visualize the sequences in reverse (so to speak) they go from x to some function g(x). Apply f() to such a sequence would go from f(x) to f(g(x)). However, I don't understand how to apply these methods to find a sequence that begins at an arbitrary g(x) and tends toward the identity function.
 
Mathematics news on Phys.org
Do you have a link to the thread you are referring to?
 
Last edited:
lurflurf said:
Wikipedia has a few things

Those links pursue the rather natural idea that the k-th iterate of a function should be analogous to the kth power of a variable. So, for example, we define f^{[1/2]}(x) to be a function r(x) such that r(r(x)) = f(x).

Now: how to apply that to the composition of two different function?

Suppose I want the 0th order composition of f with g to be f \circ_{[0]} g = f and the 1-th order composition of f with g to be f \circ_{[1]} g = f(g(x)).

One possibility is to define f \circ_{[k]} g = f( g^{[k]}(x)).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top