protonchain
- 98
- 0
When I was much younger (back in like middle school or freshman year in HS) I always wondered how you prove the quadratic formula, and then a couple years later I just fiddled around and came up with:
Given: ax^2 + bx + c = 0
(\alpha x + \beta)^2 + \delta = 0
(\alpha x + \beta)^2 + \delta = \alpha^2 x^2 + 2 \alpha \beta x + \beta^2 + \delta = 0
\alpha^2 x^2 + 2 \alpha \beta x + \beta^2 + \delta = ax^2 + bx + c
\alpha^2 = a
2 \alpha \beta = b
\beta^2 + \delta = c
so
\alpha = \sqrt{a}
\beta = \frac{b}{2 \sqrt{a}}
\delta = c - \frac{b^2}{4a}
(\alpha x + \beta)^2 + \delta = 0
(\alpha x + \beta)^2 = -\delta
(\alpha x + \beta) = \pm \sqrt{-\delta}
\alpha x = -\beta \pm \sqrt{-\delta}
x = \frac{-\beta \pm \sqrt{-\delta}}{\alpha}
Substituting gives
x = \frac{-\frac{b}{2 \sqrt{a}} \pm \sqrt{-(c - \frac{b^2}{4a}})}{\sqrt{a}}
x = \frac{-\frac{b}{2 \sqrt{a}} \pm \sqrt{\frac{b^2}{4a} - \frac{4ac}{4a}}}{\sqrt{a}}
x = \frac{-\frac{b}{2 \sqrt{a}} \pm \frac{\sqrt{b^2 - 4ac}}{2\sqrt{a}}}{\sqrt{a}}
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2 \sqrt{a} \sqrt{a}}
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2 a}
I'm sure there's a much simpler way, I just never figured it out lol.
Given: ax^2 + bx + c = 0
(\alpha x + \beta)^2 + \delta = 0
(\alpha x + \beta)^2 + \delta = \alpha^2 x^2 + 2 \alpha \beta x + \beta^2 + \delta = 0
\alpha^2 x^2 + 2 \alpha \beta x + \beta^2 + \delta = ax^2 + bx + c
\alpha^2 = a
2 \alpha \beta = b
\beta^2 + \delta = c
so
\alpha = \sqrt{a}
\beta = \frac{b}{2 \sqrt{a}}
\delta = c - \frac{b^2}{4a}
(\alpha x + \beta)^2 + \delta = 0
(\alpha x + \beta)^2 = -\delta
(\alpha x + \beta) = \pm \sqrt{-\delta}
\alpha x = -\beta \pm \sqrt{-\delta}
x = \frac{-\beta \pm \sqrt{-\delta}}{\alpha}
Substituting gives
x = \frac{-\frac{b}{2 \sqrt{a}} \pm \sqrt{-(c - \frac{b^2}{4a}})}{\sqrt{a}}
x = \frac{-\frac{b}{2 \sqrt{a}} \pm \sqrt{\frac{b^2}{4a} - \frac{4ac}{4a}}}{\sqrt{a}}
x = \frac{-\frac{b}{2 \sqrt{a}} \pm \frac{\sqrt{b^2 - 4ac}}{2\sqrt{a}}}{\sqrt{a}}
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2 \sqrt{a} \sqrt{a}}
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2 a}
I'm sure there's a much simpler way, I just never figured it out lol.