Is this behaviour generalizable?

  • Thread starter Thread starter Whovian
  • Start date Start date
Whovian
Messages
651
Reaction score
3
Notice that, when solving second-order linear homogeneous constant-coefficient ODEs, the classic linearly independent solutions are ##y_1=e^{r_1\cdot t}## and ##y_2=e^{r_2\cdot t}## for roots ##r_1,r_2## of our auxiliary equation. (Of course, we can pick any other basis for this two-dimensional vector space.)

If those are linearly dependent, the independent solutions chosen are ##y_1=e^{r\cdot t}## (no surprise) and ##y_2=t\cdot y_1=\frac{\partial y_1}{\partial r}##.

Similarly, for homogeneous second-order (insert long list of adjectives here) Cauchy-Euler equations, we set up a quadratic equation and find ##y_1=t^{r_1}## and ##y_2=t^{r_2}## as our linearly independent solutions, or, if those are linearly dependent, ##y_1=t^r## and ##y_2=t^r\cdot\log\left(t\right)=\frac{\partial y_1}{\partial r}##.

This is suggesting that, for nth-order linear homogeneous ODEs, if we can guess solutions of the form ##f\left(r,t\right)##,

If n solutions ##r_1,\ldots,r_n## show up for ##r##, we can use ##\left\{f\left(r_1,t\right),\ldots,f\left(r_n,t\right)\right\}## as a basis for the set of solutions.

If any repeated roots show up (slightly sketchy since it might not be a polynomial in terms of ##r##,) we use ##f\left(r_1,t\right),\ldots,f\left(r_n,t\right)## along with the partial derivatives with respect to ##r_k##, up to the ##\mathrm{mult}\left(r_k\right)##th derivative, for all ##k##, as our basis.

Now, for obvious reasons, this probably only holds in specific situations. Have I run into the specific couple for which our linearly independent solutions are generated by taking the partial derivative if a repeated root shows up, or is this generalizable in any way such as the near-unreadable example I suggested?
 
Physics news on Phys.org
How generalizable?
Cauchy-Euler equations are related to constant-coefficient by the chain rule.
$$\left( \dfrac{dx}{du} \dfrac{d}{dx} \right)^n=\left( \dfrac{d}{du} \right)^n$$
so if u=g(x)
$$\mathrm{y}_2(u)=u \, \mathrm{y}_1(u)$$
then
$$\mathrm{y}_2(\mathrm{g}(x))=\mathrm{g}(x) \, \mathrm{y}_1(\mathrm{g}(x))$$
where in your examples
u=log(x) for Cauchy-Euler equations
u=x for constant-coefficient
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top