zeromodz
- 244
- 0
I wanted to make an equation that shows gravitational length contractions by using coordinates instead of a final length.
L^2 = X^2 + Y^2 + Z^2
L = √(X^2 + Y^2 + Z^2)
L = Lo * √(1 - 2GM / RC^2) (Gravitational length contraction)
L = √(X^2 + Y^2 + Z^2) * √(1 - 2GM / RC^2)
L = √(X^2 + Y^2 + Z^2 - (2GMX^2)/XC^2 - (2GMY^2/YC^2) - (2GMZ^2/ZC^2))
L = √(X^2 + Y^2 + Z^2 - (2GMX/C^2) - (2GMY/C^2) - (2GMZ/C^2))
L = √(X^2 + Y^2 + Z^2 -2GM(X + Y + Z) / C^2) <--------Final equation.
What do you think?
L^2 = X^2 + Y^2 + Z^2
L = √(X^2 + Y^2 + Z^2)
L = Lo * √(1 - 2GM / RC^2) (Gravitational length contraction)
L = √(X^2 + Y^2 + Z^2) * √(1 - 2GM / RC^2)
L = √(X^2 + Y^2 + Z^2 - (2GMX^2)/XC^2 - (2GMY^2/YC^2) - (2GMZ^2/ZC^2))
L = √(X^2 + Y^2 + Z^2 - (2GMX/C^2) - (2GMY/C^2) - (2GMZ/C^2))
L = √(X^2 + Y^2 + Z^2 -2GM(X + Y + Z) / C^2) <--------Final equation.
What do you think?