- 1,001
- 11
My vector calculus is a bit rusty. Can anyone tell me if the following uses proper symbolism?
<br /> F &= \left[\begin{matrix}f_1(x_1,x_2) \\ f_2(x_1,x_2) \\ f_3(x_1,x_2) \end{matrix}\right] <br /> \qquad x = \left[\begin{matrix} x_1 \\ x_2 \end{matrix}\right] <br /> \qquad \frac{DF}{dx}&=<br /> \left[\begin{matrix}<br /> \rule{0pt}{3ex}\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\<br /> \rule{0pt}{3ex}\frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \\<br /> \rule{0pt}{3ex}\frac{\partial f_3}{\partial x_1} & \frac{\partial f_3}{\partial x_2}\end{matrix}\right]<br />
<br /> F &= \left[\begin{matrix}f_1(x_1,x_2) \\ f_2(x_1,x_2) \\ f_3(x_1,x_2) \end{matrix}\right] <br /> \qquad x = \left[\begin{matrix} x_1 \\ x_2 \end{matrix}\right] <br /> \qquad \frac{DF}{dx}&=<br /> \left[\begin{matrix}<br /> \rule{0pt}{3ex}\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\<br /> \rule{0pt}{3ex}\frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \\<br /> \rule{0pt}{3ex}\frac{\partial f_3}{\partial x_1} & \frac{\partial f_3}{\partial x_2}\end{matrix}\right]<br />
Last edited: