MHB Is V a Subspace of P2?

  • Thread starter Thread starter rayne1
  • Start date Start date
  • Tags Tags
    Subspace
rayne1
Messages
32
Reaction score
0
$$V = \{({x}^{2}-1)p(x) | p(x) \in {P}_{2}\}$$ show that V is a subspace of ${P}_{2}$I tried:
$({x}^{2}-1)(0) = 0$ so 0 is in ${P}_{2}$ (axiom 1 is satisfied). If p(x) and q(x) are in ${P}_{2}$, then $({x}^{2}-1)p(x) + ({x}^{2}-1)q(x) = ({x}^{2}-1)(p(x)+q(x))$ and since $p(x)+q(x) \in {P}_{2}$, axiom 2 is satisfied. Finally, if $p(x) \in {P}_{2}$ then $ap(x)$ (a is a scalar) is also in ${P}_{2}$. Since all three axioms are met, V is a subspace of ${P}_{2}.$

Is what I did correct?
 
Last edited:
Physics news on Phys.org
Well you showed it is a subspace of *something* but it's *not* a subspace of $P_2$, since we have:

$x^2 \in P_2$, but certainly $x^4 - x^2 = (x^2 - 1)x^2 \not\in P_2$, since it has degree $4$.
 
Deveno said:
Well you showed it is a subspace of *something* but it's *not* a subspace of $P_2$, since we have:

$x^2 \in P_2$, but certainly $x^4 - x^2 = (x^2 - 1)x^2 \not\in P_2$, since it has degree $4$.

Ok, then is it still possible to find a basis and dimension of V if it is not a subspace of ${P}_{2}$?
 
Sure. If your underlying field is $\Bbb R$, then $V$ would be a subspace of $\Bbb R[x]$. Otherwise, if its some *other* field $F$, then $V$ is a subspace of $F[x]$.

But a set need not be a subspace of some *other* vector space in order to be a vector space-it's just that we have fewer axioms to check if we're checking for a subspace (only 3 conditions), instead of the 8,9 or 10 axioms you often see listed in textbooks.

EVERY VECTOR SPACE HAS A BASIS.

I cannot stress enough the importance of this. The proof involves the axiom of choice for "arbitrary" vector spaces, but for finite-dimensional spaces, it's practically "true by definition" (since finite-dimensional *means* we have a finite basis).

Of course, $\Bbb R[x]$ (or $F[x]$ for that matter) is not finite-dimensional. But the subspace of polynomials of degree at most $n$ (for any positive integer $n$) *is* finite-dimensional, with dimension $n+1$ (so $P_2$ has dimension 3, one possible basis is $\{1,x,x^2\}$).

In your case, "your" $V$ has dimension at most $5$ (it is a subspace of $P_4$). If $\{x^2 - 1, x^3 - x,x^4 - x^2\}$ are linearly independent over your field, then $V$ has dimension at least $3$ (can you see this?).

So you have two cases (perhaps) to rule out (if you prove my statement above)-can you do this?
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top