Ok, I'm back, and I think it's worthwile to explain a bit more.
First, a comment:
Austin0 said:
Besides begging the question it also seems to indicate a preferred frame i.e. the tank.
That measurements in that frame or assumed measurements would be intrinsically more valid and should be inserted as valid measurements in another frame.
Yes, the tank frame
is preferred: It's the only one where beginners have a nonzero chance of even guessing the right result. In the other frames, it's not the question whether or not you make a mistake. The question is how many mistakes you make, and if you at least manage to give a wrong answer, or end up in the "not even wrong" camp. That's nothing to do with your individual abilities (I'm talking about the general case). It's intrinsic to the learning process: The math is deceptively easy, but the underlying concepts need a huge amount of discipline and practice to be mastered. Even worse, as a layman, you're normally not even exposed to the concepts, but live necessarily in the pop-sci ETHER world.
The most important thing in learning relativity is to tell the difference between logic and preconception. In the rest frame, many preconceptions happen to coincide with what the logic actually tells us. So if you get different results, most likely both are wrong, but the one derived in the moving frame is certainly wrong.
Now for the math.
The tank is moving at v=0.45 (I use c=1, that's easier). That's not a question, that's the setup.
In the tank frame:
The ground has v=-.45 by some basic principles, and since the lower track is at rest wrt the ground it has v=-.45, too.
Now imagine a virtual vertical plane separating the rear part from the front part of the tank. Call it the middle plane.
Now there's an equation of continuity that says that, in any given timespan, as many track segments have to cross said plane from back to forth as in the other direction, lest the segments accumulate somewhere.
From symmetry principles it is evident that v=0.45 for the upper track fulfills the continuity condition. It can be shown mathematically that this is the only solution.
This is not entirely trivial, however.
For example, the segments all like to be Lorentz-contracted. If you have a fixed number of (well-fitting) segments and spin up the tank, this cannot be achieved. Either the track will break, or the segments all get stretched. You could also add more segments until the track fits again.
This is not really important for the problem at hand, but it shows that even the seemingly easiest case is trickier than one would think.
Ok, now we've established v_upper = 0.45 in the tank frame, and v_tank = 0.45 in the ground frame, we have that formula that tells us that v_upper in the ground frame is 0.74844.
This is not up to debate. That's dictated by logic, and if you have some logic that says otherwise: it's wrong.
I don't know where all of you went wrong in the "moving" (=ground) frame, but here's a description that at least gives the correct result. It's a convoluted argument, but that's always the case if you think in terms of the ether: time dilation and length contraction.
If we observe the upper track, we see that it moves at v=0.74844, while the middle plane moves at v=0.45. We now invoke what has been dubbed the "closing speed" in recent threads. It is v1-v2=0.29844 for the upper track.
The closing speed for the lower track is 0-0.45 = -0.45.
Here's the point where some of you see the continuity equation violated, and claim that logic dictates both closing speeds be the same (up to the sign). It's easy to show how this is wrong.
How many segments ("n") do actually move from back to forth and otherwise in, say, 1 second?
Use some algebra to find that n = v/l * 1 second, where v is the closing speed and l the length of a segment.
The lower track is at rest in the ground frame. The're no relativity to be obeyed, and for the sake of simplicity we set the length of a segment in that frame to be 1 second. (Remember, c=1. If you want to use the usual dimensions: that means l = 1 lightsecond = ~300000 km.)
Then n_lower = 0.45/1 s =
-0.45/s.
The upper segments are slower (lower absolute closing velocity), but contracted and thus more densely packed. From the Lorentz contraction formula, we get: l_upper = 0.6632 s.
And we find n_upper = 0.29844/0.6632 s =
0.45/s.
What a surprise, if it works in the rest frame, the math somehow magically conspires to make it work in a moving frame, too.
That's not a coincidence, it's a
mathematically proven property of relativity. Whenever you find it violated, you got something wrong. To repeat:
you got something wrong, not relativity and not the international conspiracy of pysicists.
Whenever it doesn't work, seek you error, and don't take your flawed logic for granted and insist the the others have to be wrong.
Edit: The last sentences appear somehow harsh, and they are not aimed at you, Ken Natton, and only partially at Austin0 (more from the experience in a different thread, I'd say you, Austin0, can make use of this advice.).