Is $X_1$ Independent of $Y = X_2 + X_3$ Given Pairwise Independence?

Arthur84
Messages
2
Reaction score
0
I am trying to establish whether the following is true (my intuition tells me it is), more importantly if it is true, I need to establish a proof.

If $X_1, X_2$ and $X_3$ are pairwise independent random variables, then if $Y=X_2+X_3$, is $X_1$ independent to $Y$? (One can think of an example where the $X_i$ s are Bernoulli random variables, then the answer is yes, in the general case I have no idea how to prove it.)

A related problem is:

If $G_1,G_2$ and $G_3$ are pairwise independent sigma algebras, then is $G_1$ independent to the sigma algebra generated by $G_2$ and $G_3$ (which contains all the subsets of both, but has additional sets such as intersection of a set from $G_2$ and a set from $G_3$).

This came about as I tried to solve the following:
Suppose a Brownian motion $\{W_t\}$ is adapted to filtration $\{F_s\}$, if $0<s<t_1<t_2<t_3<\infty$, then show $a_1(W_{t_2}-W_{t_1})+a_2(W_{t_3}-W_{t_2})$ is independent of $F_s$ where $a_1,a_2$ are constants.

By definition individual future increments are independent of $F_s$, for the life of me I don't know how to prove linear combination of future increments are independent of $F_s$, intuitive of course it make sense...

Any help is greatly appreciated.
 
Physics news on Phys.org
What you say is indeed true. A ful discussion can be found in Billingsley's "Probability and Measure" on page 50.

The proof relies on a lemma, which states that

Lemma: If \mathcal{A}_1,...,\mathcal{A}_n are independent \pi-systems (=stable under finite intersections), then \sigma(\mathcal{A}_1),...,\sigma(\mathcal{A}_n) are independent.

The proof is as follows:

Let \mathcal{B}_i=\mathcal{A}_i\cup \{\Omega\} then we still have independent \pi-systems.
Take B_2,...,B_n be fixed in \mathcal{B}_2,...,\mathcal{B}_n respectively. Denote

\mathcal{L}=\{L\in \mathcal{F}~\vert~P(L\cap \bigcap{B_i})=P(L)\prod P(B_i)\}

This is a \lambda-system that contains \mathcal{A}_1. This implies that \sigma(\mathcal{A_1}) is independent from \mathcal{A_2},...,\mathcal{A}_n. Now we can proceed by induction.

Now we can prove the main theorem:

If \mathcal{A}_i,i\in I are independent \pi-systems. If I=\bigcup I_j is a disjoint union, then \sigma(\bigcup_{i\in I_j} \mathcal{A}_i),j\in J are independent.

Proof: we put

\mathcal{C}_j=\{C~\vert~\exists K\subseteq I_j~\text{finite}, B_k\in \mathcal{A}_k, k\in K: C=\bigcap_{k\in K}{B_k}\}

Then \mathcal{C}_j,j\in J are independent \pi-systems, and \sigma(\mathcal{C}_j)=\mathcal{B}_j. Now apply the lemma.
 
Thank you for the reply!
I was wondering, the condition of the lemma that $A_1, A_2,...,A_n$ are independent pi-systems is too strong, stronger than pairwise independent, not sure how to apply it in case of pairwise independent systems. In any case I will read the sections in Billingsley's book carefully.

Btw is there a quick explanation for:

A Brownian motion $\{W_t\}$ adapted to filtration $\{F_s\}$, if $0<s<t_1<t_2<t_3<\infty$, then $a_1(W_{t_2}-W_{t_1})+a_2(W_{t_3}-W_{t_2})$ is independent of $F_s$ where $a_1,a_2$ are constants.

Many thanks.
 
Pretty sure it isn't true. Suppose instead of Y = X_2 + X_3, we have Y = (X_2, X_3). If X_1 is independent of Y, then
P(X_1=x_1,X_2=x_2,X_3=x_3)) = P(X_1=x_1, Y = (x_2,x_3)) = P(X_1=x_1) P(X_2=x_2, X_3=x_3)
= P(X_1=x_1) P(X_2=x_2) P(X_3=x_3)
thus implying that X_1, X_2, and X_3 are all independent (not just pairwise). This isn't necessarily true.

So to disprove it, find 3 RVs that are pairwise independent but not all independent, and such that all of the pairwise sums of possible values of X_2 and X_3 sum to different values (so that X_2 + X_3 corresponds to (X_2, X_3)).
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Replies
4
Views
1K
Replies
6
Views
4K
2
Replies
61
Views
11K
Replies
28
Views
6K
4
Replies
175
Views
25K
Back
Top