Is Your Solution to the Limit Problem Correct?

  • Thread starter Thread starter transgalactic
  • Start date Start date
  • Tags Tags
    Limit
transgalactic
Messages
1,386
Reaction score
0
<br /> lim_{x-&gt;\infty}\frac{3x-cosx}{4x+sinx}=lim_{x-&gt;\infty}\frac{\frac{3x-cosx}{x}}{\frac{4x+sinx}{x}}=lim_{x-&gt;\infty}\frac{3-0}{4-0}=0.75 <br />

i thought bounded/infinity=0


??
 
Physics news on Phys.org
You have the correct limit, but you should remove the limit operator from the expression below, since you have already "passed to the limit" in the previous expression:
lim_{x-&gt;\infty}\frac{3-0}{4-0}=0.75
 
thanks
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top