Isomorphic groups that have different properties?

tgt
Messages
519
Reaction score
2
What are some properties apart from the actual names of the elements that differ between isomorphic groups?
 
Physics news on Phys.org
tgt said:
What are some properties apart from the actual names of the elements that differ between isomorphic groups?

Your question actually is - what, in general, are the differences between different groups?

Elements and the defined binary operation.
 
that's pretty much it. Two isomorphic groups (or fields or... pretty much anything isomorphic) differ only in the "labeling": what you name the elements and operations.
 
in practice it is sometimes a little more subtle than it seems.

e.g. we usually give a cyclic group in the form (Z/n,+) but may not notice that this gives not only the group but also a distinguished generator, namely 1.

the group( (Z/p)*, .) of units in the ring Z/p is also cyclic when p is a prime, but it may not be immediately clear what a generator is. moreover since there are many generators, (Z/p)* and no one is naturally distinguished, there is no completely natural way to choose an isomorphism between the groups (Z/p)* and Z/(p-1).

i.e. in a sense, ({1,2,3,...,p-1}, . ) are just different names for ({0,1,2,...,p-2},+) but it is not clear which new nAME CORRESPONDS TO WHICH OLD NAME.

e.g. when p = 7, (Z/7)* is isomorphic to Z/6, and the least generator is 3, perhaps it is natural to associate n with 3^n, for n=0,...,5, but I am not sure this generator is always best.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...

Similar threads

Back
Top