Isomorphism from group to a product group

EV33
Messages
192
Reaction score
0

Homework Statement



Determine whether or not G is isomorphic to the product group HXK.

G=ℂx
H={unit circle}
K={Positive real numbers}



Homework Equations



Let H and K be subroups of G, and let f:HXK→G be the multiplication map, defined by f(h,k)=hk. Its image is the set HK={hk: h in H, k in K}.

f is an isomorphism from the product group HXK to G iff H intersect K is the identity,HK=G, and also H and K are normal subgroups of G.


The Attempt at a Solution



My actual question is how am I supposed to look at the unit circle?
I know if I view it as all the points (a,b) on the unit circle then its intersection with K would be the empty set and thus G wouldn't be isomorphic to HXK.

but I have a feeling that is too simple. Am I potentially supposed to view the unit circle as cos(θ)+i*sin(θ) where θ is in ℝ?
 
Last edited:
Physics news on Phys.org
Any complex number in ℂx can be represented as re and the reverse holds as well.
So z → (r,θ) is a bijection.
If you define the operations in HxK to be regular multiplication, respectively regular addition, you have preservation of the operation, since it literally is the same.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top