Lebombo
- 144
- 0
Homework Statement
Why when I try to evaluate this with Partial Fractions, why do I end up with the original function?
\int\frac{n}{(n^{2}+1)^{2}}
\frac{n}{(n^{2}+1)(n^{2}+1)}
\frac{Ax+B}{n^{2}+1} + \frac{Cx+D}{(n^{2}+1)^{2}}
1n = (An+B)(n^{2}+1) + Cx + D
0n^{3}+ 0n^{2} + 1n + 0n^{0} = n^{3}(A) + n^{2}(B) + n(A+C) + n^{0}(B+D)
A=0 B=0 C=1 D=0
\frac{0n+0}{n^{2}+1} + \frac{1n+0}{(n^{2}+1)^{2}}
= 0 + \frac{n}{(n^{2}+1)^{2}}