gabbagabbahey said:
You are still skipping important steps, and making errors in the process. How do you go from
\Phi _A \left( {b,\varphi ,z} \right) = \sum\limits_{\nu = 0}^\infty {\sum\limits_{m = 0}^\infty {\left[ {A_{\nu m}\sin \left( {\nu \varphi } \right)} \right]\left[ {\sin \left( {\frac{{m\pi }}{L}z} \right)} \right]\left[ {I_\nu \left( {\frac{{m\pi }}{L}b } \right)} \right]} }
to
\\A_{\nu m} = \frac{\Phi _A \left( {b,\varphi ,z} \right) }{{I_\nu \left( {\frac{{m\pi b}}{L}} \right)}}\int\limits_0^{2\pi } {\int\limits_0^L {\sin \left( {\nu \varphi } \right)\sin \left( {\frac{{m\pi }}{L}z} \right)dzd\varphi } }
? (Don't just say "using orthogonality", show your work)
Starting with
\Phi _A \left( {b,\varphi ,z} \right) = \sum\limits_{\nu = 0}^\infty {\sum\limits_{m = 0}^\infty {\left[ {A_{\nu m}\sin \left( {\nu \varphi } \right)} \right]\left[ {\sin \left( {\frac{{m\pi }}{L}z} \right)} \right]\left[ {I_\nu \left( {\frac{{m\pi }}{L}b } \right)} \right]} }
multiply both sides by \sin \left( {\nu '\varphi } \right)\sin \left( {\frac{{m'\pi }}{L}z} \right)}<br />
to get
\Phi _A \left( {b,\varphi ,z} \right)\sin \left( {\nu '\varphi } \right)\sin \left( {\frac{{m'\pi }}{L}z} \right) = \sum\limits_{\nu = 0}^\infty {\sum\limits_{m = 0}^\infty {\left[ {A_{\nu m} \sin \left( {\nu \varphi } \right)} \right]\left[ {\sin \left( {\frac{{m\pi }}{L}z} \right)} \right]\left[ {I_\nu \left( {\frac{{m\pi b}}{L}} \right)} \right]} } \sin \left( {\nu '\varphi } \right)\sin \left( {\frac{{m'\pi }}{L}z} \right)$
Then integrate both sides.
<br />
\begin{array}{l}<br />
\int\limits_0^{2\pi } {d\varphi \left\{ {\int\limits_0^L {dz} \left[ {\Phi _A \left( {b,\varphi ,z} \right)\sin \left( {\nu '\varphi } \right)\sin \left( {\frac{{m'\pi }}{L}z} \right)} \right]} \right\}} = \\ <br />
\int\limits_0^{2\pi } {d\varphi \left\{ {\int\limits_0^L {dz} \left[ {\sum\limits_{\nu = 0}^\infty {\sum\limits_{m = 0}^\infty {\left[ {A_{\nu m} \sin \left( {\nu \varphi } \right)} \right]\left[ {\sin \left( {\frac{{m\pi }}{L}z} \right)} \right]\left[ {I_\nu \left( {\frac{{m\pi b}}{L}} \right)} \right]} } \sin \left( {\nu '\varphi } \right)\sin \left( {\frac{{m'\pi }}{L}z} \right)} \right]} \right\}} \\ <br />
\end{array}<br />
On the right hand side, the summations come out of the integral:
<br />
\sum\limits_{\nu = 0}^\infty {\sum\limits_{m = 0}^\infty {\int\limits_0^{2\pi } {d\varphi \left\{ {\int\limits_0^L {dz} \left[ {A_{\nu m} \sin \left( {\nu \varphi } \right)} \right]\left[ {\sin \left( {\frac{{m\pi }}{L}z} \right)} \right]\left[ {I_\nu \left( {\frac{{m\pi b}}{L}} \right)} \right]\sin \left( {\nu '\varphi } \right)\sin \left( {\frac{{m'\pi }}{L}z} \right)} \right\}} } } <br />
Orthogonality says that the integration of the products will be \delta_{\nu\nu'} and \delta_{mm'}and the summations are dropped. This results in
<br />
\int\limits_0^{2\pi } {d\varphi \left\{ {\int\limits_0^L {dz} \left[ {\Phi _A \left( {b,\varphi ,z} \right)\sin \left( {\nu '\varphi } \right)\sin \left( {\frac{{m'\pi }}{L}z} \right)} \right]} \right\}} = A_{\nu m} I_\nu \left( {\frac{{m\pi b}}{L}} \right)<br />
The primes clearly aer no longer necessary and can be dropped. The modified Bessel function term is a constant, so
A_{\nu m} = \frac{1}{{I_\nu \left( {\frac{{m\pi b}}{L}} \right)}}\int\limits_0^{2\pi } {\int\limits_0^L {\Phi _A \left( {b,\varphi ,z} \right)\sin \left( {\nu \varphi } \right)\sin \left( {\frac{{m\pi }}{L}z} \right)dzd\varphi } } <br />
Also note that I put \Phi_{A} back in the integral since I'm no longer assuming it's constant. Does that help? Thanks for hanging in there with me on this.