nlsherrill said:
So, when the news reports that there is a danger of radiation exposure...what exactly is being exposed? I think I know the very basics of the core, which is essentially uranium fuel rods that are bombarded by free neutrons right? Where does Xe, Kr, and I come from? Are these what uranium decays too? When people get radiation sickness/exposure, what is harming them? electromagnetic radiation or something else?
Clearly I have no clue what I'm talking about, but I would like too.
Steam from the primary system would carry Xe and Kr (noble) gases, and perhaps some I and Br which are volatiles. It is expected that I and Br would form oxides, and react chemically to form iodates and bromates, if not iodides and bromides.
Xe, Kr, I, Br are fission products produced when U-236 (U235+n) fissions. There are other fission products such as Cs, Ba, La, . . . . and Rb, Sr, Y, . . . which are essentially in solid form, and the unused U, Pu, . . . which is in the fuel. Normally these are surrounded by a metal alloy of Zr, but that alloy has probably corroded/oxidized, and no longer performs its function, which is the keep the fuel (UO2 and fission products) separated from the coolant.
The fuel and fission products can oxidize into particles on the order of several microns, and this can be then dispersed in the coolant.
The noble gases can readily escape into the steam, and it is hoped that much of the fuel will remain intact.
There are also core components, e.g. control rods, and other structures that are made of stainless steel, typically SS304. The control rods contain boron carbide (B4C) and perhaps Hf, which are neutron absorbers used to control/limit the fission reaction or shutdown the reactor. If the temperatures in the core got to ~1300-1400 C, then the control rods could have melted. Above 1000 C, they could have gotten soft and deformed.
When people are exposed to radiation, it is usually beta and gamma radiation, or possibly alpha particles if isotopes of heavy elements, e.g., Rn, Ra, U or tranuranics were ingested or inhaled. Alpha particles are stopped by clothing or skin. Beta particles are more penetrating, and gamma photons are the most penetrating.
Ionizing radiation harms cells by radiolysis of the water (which forms peroxide and hydrogen), which can then chemically react with the complex molecules like DNA, RNA, proteins, vitamins, enzymes, coenzymes, . . . . which are necessary for cells to function.
A little radiation is not necessarily bad. Cells can be repared, or dead cells are simply discarded and replaced. The more radiation, the more cellular necrosis, the more one can become seriously ill. Some damaged cells may mutate into cancers. Nerve cells are particularly sensitive to radiation, and they are not so easily replaced.