Joint and conditional distributions

OFDM
Messages
2
Reaction score
0
I'm having a problem evaluating a distribution-

Suppose X and Y are Chi-square random variables, and a is some
constant greater than 0. X and Y are independent, but not identically distributed (they have different DOFs).
I want to find

P(X>a,X-Y>0). So I use Bayes' theorem to write

P(X>a,X-Y>0)
=P(X>a | X-Y > 0)*P(X-Y>0)
=P(X>a| X>Y)*P(X>Y)

Now I have an expression for P(X>a) and P(X>Y), but I am at a
loss as to how to evaluate the conditional distribution P(X>a|
X>Y).

I figured out that if Y was a constant (rather than a random variable), then I could write

P(X>a| X>Y) = { 1 if Y>a
{ P(X>a)/P(X>Y) if Y<a

But this does not help evalaute the distribution because I requires knowledge of the value of random variable Y.

Any help will be much appreciated.
 
Last edited:
Physics news on Phys.org
Why are you going through the conditional probability formula?

(X>a, X>Y) if and only if (X > max{a,Y}) or (X - max{a,Y} > 0). Just an observation.
 
Why are you going through the conditional probability formula?
(X>a, X>Y) if and only if (X > max{a,Y}) or (X - max{a,Y} > 0). Just an observation

Thanks, that is a good observation. So now I know that

P(X>a,X>Y) = P(X>max(a,Y)). I would like to express this as some function of P(X>a) and P(X>Y) . That is, I know that

P(X>a,X>Y) = [ P(X>a) if a>Y
[ P(X>Y) if a<Y

but I only know a, not Y (since Y is an RV). So, in other words, is there a way to determine the 'threshold' at which P(X>a,X>Y) changes from P(X>a) to P(X>Y)?
 
BTW, is this homework? If it is, this is not the place to post it.

There is no set threshold because -- as you posted -- Y is a r.v. By implication so is max{a,Y}. I am guessing that the cdf of max{a,Y} would be some linear combination of CDF(Y|Y>a) and the mass point Y=a (representing all the occurances of Y<a). Even after obtaining CDF(max{a,Y}) you still need to figure out the CDF of the related r.v. (X - max{a,Y}).
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Replies
5
Views
2K
Replies
1
Views
2K
Replies
30
Views
4K
Replies
4
Views
3K
Replies
4
Views
1K
Replies
5
Views
2K
Back
Top