Joint pmf of 2 binomially distributed random variables

cimmerian
Messages
14
Reaction score
0
I hope I wrote that correctly but I'm trying to find the joint. I heard it was impossible from someone.

X = A/R
A~BIN(n1, p1)
R~BIN(n2, p2)

I know I shouldn't be using the Jacobian method for Discrete distributions but I have to do it anyway.

Anyone know?
 
Physics news on Phys.org
The major difficulty arises from the fact that P(R=0) > 0, so you have a non-zero probability of X being infinite.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top