Joint probability of partitioned vectors

scinoob
Messages
17
Reaction score
0
Hi everybody, I apologize if this question is too basic but I did 1 hour of solid Google searching and couldn't find an answer and I'm stuck.

I'm reading Bishop's Pattern Recognition and Machine Learning and in the second chapter he introduces partitioned vectors. Say, if X is a D-dimensional vector, it can be partitioned like:

X = [Xa, Xb] where Xa is the first M components of X and Xb is the remaining D-M components of X.

I have no problem with this simple concept. Later in the same chapter he talks about conditional and marginal multivariate Gaussian distributions and he uses the notation p(Xa, Xb). I'm trying to understand how certain integrals involving this notation are expanded but I'm actually struggling to understand even this expression. It seems to suggest that we're denoting the joint probability of the components of Xa and the components of Xb. But those are just the components of X anyway!

What is the difference between P(Xa, Xb) and P(X)?

It will be more helpful for me if we considered a more concrete example. Say, X = [X1, X2, X3, X4] and Xa = [X1, X2] while Xb = [X3, X4]. Now, the joint probability P(X) would simply be P(X1, X2, X3, X4), right? What is P(Xa, Xb) in this case?

Thanks in advance!
 
Physics news on Phys.org
My guess: in later chapters he discusses Xa and Xb as separate entities.
 
scinoob said:
Hi everybody, I apologize if this question is too basic but I did 1 hour of solid Google searching and couldn't find an answer and I'm stuck.

I'm reading Bishop's Pattern Recognition and Machine Learning and in the second chapter he introduces partitioned vectors. Say, if X is a D-dimensional vector, it can be partitioned like:

X = [Xa, Xb] where Xa is the first M components of X and Xb is the remaining D-M components of X.

I have no problem with this simple concept. Later in the same chapter he talks about conditional and marginal multivariate Gaussian distributions and he uses the notation p(Xa, Xb). I'm trying to understand how certain integrals involving this notation are expanded but I'm actually struggling to understand even this expression. It seems to suggest that we're denoting the joint probability of the components of Xa and the components of Xb. But those are just the components of X anyway!

What is the difference between P(Xa, Xb) and P(X)?

It will be more helpful for me if we considered a more concrete example. Say, X = [X1, X2, X3, X4] and Xa = [X1, X2] while Xb = [X3, X4]. Now, the joint probability P(X) would simply be P(X1, X2, X3, X4), right? What is P(Xa, Xb) in this case?

Thanks in advance!
There is no difference between p(Xa, Xb) and p(X), because X = (Xa, Xb). It starts to get interesting when we introduce marginal and conditional probability densities e.g. p(Xa | Xb) and p(Xb). Obviously, p(Xa, Xb) = p(X) = p(Xa | Xb) . p(Xb)

You get p(Xb) from p(X) by integrating out over Xa.

NB use small "p" for probability density. Use capital "P" for probability.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top