MHB Jordan-Basis for Matrix: Need Help!

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Matrix
Click For Summary
SUMMARY

The discussion focuses on finding a Jordan basis for the matrix \( A = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \). The eigenvalue \( \lambda = 1 \) has a quadruple multiplicity, leading to a Jordan form with three blocks. The vectors \( e_1 = (3, 5, 0, 0) \), \( e_2 = (0, 0, 1, 0) \), \( e_3 = (0, 1, 0, 0) \), and \( e_4 = (0, 0, 0, 1) \) form the Jordan basis \( B_J \). The transition matrix is \( P = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 5 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \).

PREREQUISITES
  • Understanding of Jordan forms in linear algebra
  • Knowledge of eigenvalues and eigenvectors
  • Familiarity with matrix operations and transformations
  • Proficiency in solving linear systems of equations
NEXT STEPS
  • Study the computation of Jordan forms for different matrices
  • Learn about the properties of eigenvalues and their geometric multiplicity
  • Explore the application of transition matrices in linear transformations
  • Investigate the implications of Jordan canonical forms in differential equations
USEFUL FOR

Students and professionals in mathematics, particularly those specializing in linear algebra, matrix theory, and systems of linear equations. This discussion is beneficial for anyone looking to deepen their understanding of Jordan forms and their applications.

Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Unsolved question posted by gotmejerry on MHF (April 8th 2013, 01:06 PM).

Hi,
I couldn't find a Jordan-basis for this matrix:


png.latex


I have found an eigenvector: v1=[3 5 0 0] then an other vector v2 for (A-I)v2=v1, then I tried to compute (A-I)v3=v2 but that was inconsistent so I think I need 2 other eigenvectors, but I don't know how to find them.

Thanks for your help!
 
Mathematics news on Phys.org
Eigenvalues of $A=\begin{bmatrix}{1}&{0}&{3}&{0}\\{0}&{1}&{5}&{0}\\{0}&{0}&{1}&{0}\\{0}&{0}&{0}&{1}\end{bmatrix}\in\mathbb{R}^{4\times 4}$: $$\det (A-\lambda I)=(1-\lambda)^4=0\Rightarrow \lambda=1 \quad(\mbox{cuadruple)}$$ On the other hand, we have: $$\dim \ker (A-I)=4-\mbox{rank} \begin{bmatrix}{0}&{0}&{3}&{0}\\{0}&{0}&{5}&{0}\\{0}&{0}&{0}&{0}\\{0}&{0}&{0}&{0}\end{bmatrix}=4-1=3$$ This means that the canonical form of Jordan $J$ has three blocks: $$J=\begin{bmatrix}{1}&{1}&{0}&{0}\\{0}&{1}&{0}&{0}\\{0}&{0}&{1}&{0}\\{0}&{0}&{0}&{1}\end{bmatrix}$$ We have to find o basis $B=\{e_1,e_2,e_3,e_4\}$ of $\mathbb{R}^4$ satisfying $$\left \{ \begin{matrix} (A-I)e_1=0\\ (A- I)e_2=e_1\\(A-I)e_3=0\\(A-I)e_4=0 \end{matrix}\right.$$ The first and the second systems have the form $(A-I)x=h$, that is: $$\begin {bmatrix}{0}&{0}&{3}&{0}\\{0}&{0}&{5}&{0}\\{0}&{0}&{0}&{0}\\ {0}&{0}&{0}&{0}\end{bmatrix} \begin {bmatrix}{x_1}\\{x_2}\\{x_3}\\{x_4}\end{bmatrix} = \begin {bmatrix}{h_1}\\{h_2}\\{h_3}\\{h_4}\end{bmatrix} \Leftrightarrow \left \{ \begin{matrix} 3x_3=h_1\\5x_3=h_2\\0=h_3\\0=h_4 \end{matrix}\right.\quad (1)$$ Easily we get the general solution ($GS$) of $(1)$ and the compatibility conditions ($CC$): $$GS\;\left \{ \begin{matrix} x_1=\alpha\\x_2=\beta\\x_3=\frac{h_1}{3}\\x_4= \gamma \end{matrix}\right.\quad CC\;\left \{ \begin{matrix} 5h_1-3h_2=0\\h_3=0\\h_4=0 \end{matrix}\right.$$ Vector $e_1$. In this case $h_1=h_2=h_3=h_4=0$ and the general solution of $(1)$ is $e_1=(\alpha,\beta,0,\gamma).$ This vector $x$ will be as $h$ in the next system so, we impose $CC$: $5\alpha-3\beta=0,0=0,\gamma=0$. We choose $\alpha=3,\beta=5,\gamma=0$ so, $\boxed{e_1=(3,5,0,0)}$.

Vector $e_2$. In this case $h_1=3,h_2=5,h_3=h_4=0$ and the general solution of $(1)$ is $e_2=(\alpha,\beta,1,\gamma).$ We simply choose $\alpha=0,\beta=0,\gamma=0$ so, $\boxed{e_2=(0,0,1,0)}$.

Vectors $e_3$ and $e_4$. These are eigenvectors associated to the eigenvalue $1$, That is, solutions of the system $(A-I)x=0\equiv x_3=0$. We choose $e_3$ and $e_4$ linearly independent such that $\{e_1,e_3,e_4\}$ form a basis of $\ker (A-I)$ for example $\boxed{e_3=(0,1,0,0)}$ and $\boxed{e_4=(0,0,0,1)}$. As a consequence:

$(i)$ Jordan basis for $A$: $B_J=\{e_1,e_2,e_3,e_4\}$

$(ii)$ Transition matrix: $P=\begin{bmatrix}{3}&{0}&{0}&{0}\\{5}&{0}&{1}&{0}\\{0}&{1}&{0}&{0}\\{0}&{0}&{0}&{1}\end{bmatrix}$

$(iii)$ Canonical form of Jordan: $J=\begin{bmatrix}{1}&{1}&{0}&{0}\\{0}&{1}&{0}&{0}\\{0}&{0}&{1}&{0}\\{0}&{0}&{0}&{1}\end{bmatrix}$

P.S. Easily verified, $P^{-1}AP=J$ or equivalently $AP=PJ$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 5 ·
Replies
5
Views
14K