MHB Jordan-Basis for Matrix: Need Help!

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Matrix
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Unsolved question posted by gotmejerry on MHF (April 8th 2013, 01:06 PM).

Hi,
I couldn't find a Jordan-basis for this matrix:


png.latex


I have found an eigenvector: v1=[3 5 0 0] then an other vector v2 for (A-I)v2=v1, then I tried to compute (A-I)v3=v2 but that was inconsistent so I think I need 2 other eigenvectors, but I don't know how to find them.

Thanks for your help!
 
Mathematics news on Phys.org
Eigenvalues of $A=\begin{bmatrix}{1}&{0}&{3}&{0}\\{0}&{1}&{5}&{0}\\{0}&{0}&{1}&{0}\\{0}&{0}&{0}&{1}\end{bmatrix}\in\mathbb{R}^{4\times 4}$: $$\det (A-\lambda I)=(1-\lambda)^4=0\Rightarrow \lambda=1 \quad(\mbox{cuadruple)}$$ On the other hand, we have: $$\dim \ker (A-I)=4-\mbox{rank} \begin{bmatrix}{0}&{0}&{3}&{0}\\{0}&{0}&{5}&{0}\\{0}&{0}&{0}&{0}\\{0}&{0}&{0}&{0}\end{bmatrix}=4-1=3$$ This means that the canonical form of Jordan $J$ has three blocks: $$J=\begin{bmatrix}{1}&{1}&{0}&{0}\\{0}&{1}&{0}&{0}\\{0}&{0}&{1}&{0}\\{0}&{0}&{0}&{1}\end{bmatrix}$$ We have to find o basis $B=\{e_1,e_2,e_3,e_4\}$ of $\mathbb{R}^4$ satisfying $$\left \{ \begin{matrix} (A-I)e_1=0\\ (A- I)e_2=e_1\\(A-I)e_3=0\\(A-I)e_4=0 \end{matrix}\right.$$ The first and the second systems have the form $(A-I)x=h$, that is: $$\begin {bmatrix}{0}&{0}&{3}&{0}\\{0}&{0}&{5}&{0}\\{0}&{0}&{0}&{0}\\ {0}&{0}&{0}&{0}\end{bmatrix} \begin {bmatrix}{x_1}\\{x_2}\\{x_3}\\{x_4}\end{bmatrix} = \begin {bmatrix}{h_1}\\{h_2}\\{h_3}\\{h_4}\end{bmatrix} \Leftrightarrow \left \{ \begin{matrix} 3x_3=h_1\\5x_3=h_2\\0=h_3\\0=h_4 \end{matrix}\right.\quad (1)$$ Easily we get the general solution ($GS$) of $(1)$ and the compatibility conditions ($CC$): $$GS\;\left \{ \begin{matrix} x_1=\alpha\\x_2=\beta\\x_3=\frac{h_1}{3}\\x_4= \gamma \end{matrix}\right.\quad CC\;\left \{ \begin{matrix} 5h_1-3h_2=0\\h_3=0\\h_4=0 \end{matrix}\right.$$ Vector $e_1$. In this case $h_1=h_2=h_3=h_4=0$ and the general solution of $(1)$ is $e_1=(\alpha,\beta,0,\gamma).$ This vector $x$ will be as $h$ in the next system so, we impose $CC$: $5\alpha-3\beta=0,0=0,\gamma=0$. We choose $\alpha=3,\beta=5,\gamma=0$ so, $\boxed{e_1=(3,5,0,0)}$.

Vector $e_2$. In this case $h_1=3,h_2=5,h_3=h_4=0$ and the general solution of $(1)$ is $e_2=(\alpha,\beta,1,\gamma).$ We simply choose $\alpha=0,\beta=0,\gamma=0$ so, $\boxed{e_2=(0,0,1,0)}$.

Vectors $e_3$ and $e_4$. These are eigenvectors associated to the eigenvalue $1$, That is, solutions of the system $(A-I)x=0\equiv x_3=0$. We choose $e_3$ and $e_4$ linearly independent such that $\{e_1,e_3,e_4\}$ form a basis of $\ker (A-I)$ for example $\boxed{e_3=(0,1,0,0)}$ and $\boxed{e_4=(0,0,0,1)}$. As a consequence:

$(i)$ Jordan basis for $A$: $B_J=\{e_1,e_2,e_3,e_4\}$

$(ii)$ Transition matrix: $P=\begin{bmatrix}{3}&{0}&{0}&{0}\\{5}&{0}&{1}&{0}\\{0}&{1}&{0}&{0}\\{0}&{0}&{0}&{1}\end{bmatrix}$

$(iii)$ Canonical form of Jordan: $J=\begin{bmatrix}{1}&{1}&{0}&{0}\\{0}&{1}&{0}&{0}\\{0}&{0}&{1}&{0}\\{0}&{0}&{0}&{1}\end{bmatrix}$

P.S. Easily verified, $P^{-1}AP=J$ or equivalently $AP=PJ$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top