MHB Jordan-Basis for Matrix: Need Help!

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Matrix
AI Thread Summary
The discussion centers on finding a Jordan basis for a given 4x4 matrix with a quadruple eigenvalue of 1. The user has identified one eigenvector and attempted to find additional vectors but encountered inconsistencies. They derived the canonical Jordan form, which includes three blocks, and outlined the necessary conditions for constructing the Jordan basis. Ultimately, they successfully identified the Jordan basis vectors and the transition matrix, confirming that the transformation satisfies the Jordan canonical form. The thread highlights the process of deriving a Jordan basis and the importance of compatibility conditions in linear algebra.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Unsolved question posted by gotmejerry on MHF (April 8th 2013, 01:06 PM).

Hi,
I couldn't find a Jordan-basis for this matrix:


png.latex


I have found an eigenvector: v1=[3 5 0 0] then an other vector v2 for (A-I)v2=v1, then I tried to compute (A-I)v3=v2 but that was inconsistent so I think I need 2 other eigenvectors, but I don't know how to find them.

Thanks for your help!
 
Mathematics news on Phys.org
Eigenvalues of $A=\begin{bmatrix}{1}&{0}&{3}&{0}\\{0}&{1}&{5}&{0}\\{0}&{0}&{1}&{0}\\{0}&{0}&{0}&{1}\end{bmatrix}\in\mathbb{R}^{4\times 4}$: $$\det (A-\lambda I)=(1-\lambda)^4=0\Rightarrow \lambda=1 \quad(\mbox{cuadruple)}$$ On the other hand, we have: $$\dim \ker (A-I)=4-\mbox{rank} \begin{bmatrix}{0}&{0}&{3}&{0}\\{0}&{0}&{5}&{0}\\{0}&{0}&{0}&{0}\\{0}&{0}&{0}&{0}\end{bmatrix}=4-1=3$$ This means that the canonical form of Jordan $J$ has three blocks: $$J=\begin{bmatrix}{1}&{1}&{0}&{0}\\{0}&{1}&{0}&{0}\\{0}&{0}&{1}&{0}\\{0}&{0}&{0}&{1}\end{bmatrix}$$ We have to find o basis $B=\{e_1,e_2,e_3,e_4\}$ of $\mathbb{R}^4$ satisfying $$\left \{ \begin{matrix} (A-I)e_1=0\\ (A- I)e_2=e_1\\(A-I)e_3=0\\(A-I)e_4=0 \end{matrix}\right.$$ The first and the second systems have the form $(A-I)x=h$, that is: $$\begin {bmatrix}{0}&{0}&{3}&{0}\\{0}&{0}&{5}&{0}\\{0}&{0}&{0}&{0}\\ {0}&{0}&{0}&{0}\end{bmatrix} \begin {bmatrix}{x_1}\\{x_2}\\{x_3}\\{x_4}\end{bmatrix} = \begin {bmatrix}{h_1}\\{h_2}\\{h_3}\\{h_4}\end{bmatrix} \Leftrightarrow \left \{ \begin{matrix} 3x_3=h_1\\5x_3=h_2\\0=h_3\\0=h_4 \end{matrix}\right.\quad (1)$$ Easily we get the general solution ($GS$) of $(1)$ and the compatibility conditions ($CC$): $$GS\;\left \{ \begin{matrix} x_1=\alpha\\x_2=\beta\\x_3=\frac{h_1}{3}\\x_4= \gamma \end{matrix}\right.\quad CC\;\left \{ \begin{matrix} 5h_1-3h_2=0\\h_3=0\\h_4=0 \end{matrix}\right.$$ Vector $e_1$. In this case $h_1=h_2=h_3=h_4=0$ and the general solution of $(1)$ is $e_1=(\alpha,\beta,0,\gamma).$ This vector $x$ will be as $h$ in the next system so, we impose $CC$: $5\alpha-3\beta=0,0=0,\gamma=0$. We choose $\alpha=3,\beta=5,\gamma=0$ so, $\boxed{e_1=(3,5,0,0)}$.

Vector $e_2$. In this case $h_1=3,h_2=5,h_3=h_4=0$ and the general solution of $(1)$ is $e_2=(\alpha,\beta,1,\gamma).$ We simply choose $\alpha=0,\beta=0,\gamma=0$ so, $\boxed{e_2=(0,0,1,0)}$.

Vectors $e_3$ and $e_4$. These are eigenvectors associated to the eigenvalue $1$, That is, solutions of the system $(A-I)x=0\equiv x_3=0$. We choose $e_3$ and $e_4$ linearly independent such that $\{e_1,e_3,e_4\}$ form a basis of $\ker (A-I)$ for example $\boxed{e_3=(0,1,0,0)}$ and $\boxed{e_4=(0,0,0,1)}$. As a consequence:

$(i)$ Jordan basis for $A$: $B_J=\{e_1,e_2,e_3,e_4\}$

$(ii)$ Transition matrix: $P=\begin{bmatrix}{3}&{0}&{0}&{0}\\{5}&{0}&{1}&{0}\\{0}&{1}&{0}&{0}\\{0}&{0}&{0}&{1}\end{bmatrix}$

$(iii)$ Canonical form of Jordan: $J=\begin{bmatrix}{1}&{1}&{0}&{0}\\{0}&{1}&{0}&{0}\\{0}&{0}&{1}&{0}\\{0}&{0}&{0}&{1}\end{bmatrix}$

P.S. Easily verified, $P^{-1}AP=J$ or equivalently $AP=PJ$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top