K-dimensional brownian motion

  • #1
I'm trying to write a fokker planck equation for a particular SDE, but I'm caught up on an aside by the author I'm following.
He has a SDE with drift [tex]b \in \mathbb{R}^n[/tex], a dispersion matrix [tex]\sigma \in \mathbb{R}^{n\times k}[/tex], and k-dimensional brownian motion [tex]W_t[/tex], resulting in something like this
[tex]
dX_t &=& b(X_t)dt + \sigma(X_t)dW_t
[/tex]
My confusion comes from this k-dimensional brownian motion. What is this k-th dimension? I'm guessing that X_t will take a value in n-d,and W_t is k-by-1, so that would make sigma like a covariance matrix. But what do these k components actually mean physically?

Thanks
 
Last edited:

Answers and Replies

Related Threads on K-dimensional brownian motion

  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
7
Views
3K
  • Last Post
Replies
1
Views
2K
Replies
6
Views
991
  • Last Post
Replies
7
Views
2K
Replies
2
Views
1K
Replies
4
Views
2K
  • Last Post
Replies
0
Views
947
  • Last Post
Replies
6
Views
2K
Replies
0
Views
1K
Top