K-th Prime Proofs & Co-Prime Numbers

vmx200
Messages
2
Reaction score
0
I am having a hard time making head way on two problems related to the k-th prime and one about co-primes that I would really appreciate some help and/or direction!

Prove that:
(let pk be the k-th prime)
Picture1-1.png


and

Picture3-2.png

Regarding co-primes... is there any way to find a set of four numbers that are coprime, but cannot be subsequently grouped into sets of three that are?

Again, thank you for your time and generosity in helping me out!
 
Last edited:
Physics news on Phys.org
In the first problem, is the number on the right prime or composite? If it's composite, what can you say about its factors?
 
hamster143 said:
In the first problem, is the number on the right prime or composite? If it's composite, what can you say about its factors?

Oh, sorry!
Uhmn... pk is the k-th prime, so pk + 1 (the right most term) would be a composite, I believe?
 
I'm asking about the whole thing: 1 + the product of all primes up to pk.
 
vmx200 said:
Oh, sorry!
Uhmn... pk is the k-th prime, so pk + 1 (the right most term) would be a composite, I believe?
I believe you are misreading the expression.

To clarify: p_{k+1} \leq (p_1~p_2 \cdots p_k)+1
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top