MHB Katresha Davis' Trig Questions: Distance, Altitude & Ratio

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Trignometry
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here are the questions:

Prealgebra math problems ?

The pilot of a helicopter at an altitude of 6,000 ft sees a second helicopter is 4,000 ft. What is the distance from the first helicopter to the second along the line of sight?
6. What is the difference in altitude between the two helicopters ?
7. What trigonometric ratio will you use to find d ?
8. Substitute 43 for the angle measure and 2,000 for the opposite side
9. Multiply each side by d
10. Divide each side by sin 43 degrees
11. Use a calculator to simply

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Katresha Davis,

Please refer to the following diagram:

View attachment 1228

6.) We may find the difference in altitude between the two helicopters by subtracting the altitude of the lower helicopter from the altitude of the higher helicopter:

$$\Delta h=(6000-4000)\text{ ft}=2000\text{ ft}$$

7.) We know the side opposite the given angle, and we are wanting to find the hypotenuse, so we should use the sine function as it relates an angle, the side opposite the angle and the hypotenuse:

$$\sin(\theta)=\frac{\text{opposite}}{\text{hypotenuse}}$$

8.) Using the values in our problem, we may state:

$$\sin\left(43^{\circ} \right)=\frac{2000}{d}$$

9.) Multiplying both sides by $d$, we obtain:

$$d\sin\left(43^{\circ} \right)=2000$$

10.) Dividing both sides by $\sin\left(43^{\circ} \right)$, we get:

$$d=\frac{2000}{\sin\left(43^{\circ} \right)}$$

11.) Using a calculator, we find:

$$d\approx2932.55837127925\text{ ft}$$
 

Attachments

  • copter.jpg
    copter.jpg
    5.6 KB · Views: 81
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
125
Views
19K
Replies
3
Views
2K
Replies
62
Views
11K
Replies
16
Views
5K
Back
Top