MHB Katresha Davis' Trig Questions: Distance, Altitude & Ratio

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Trignometry
AI Thread Summary
The discussion focuses on solving trigonometric problems related to the altitudes of two helicopters. The altitude difference between the helicopters is calculated to be 2,000 feet. To find the distance along the line of sight, the sine function is utilized, relating the angle and the opposite side to the hypotenuse. The formula derived is d = 2000/sin(43 degrees), leading to a calculated distance of approximately 2,932.56 feet. The thread provides a clear method for applying trigonometric ratios to real-world scenarios.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here are the questions:

Prealgebra math problems ?

The pilot of a helicopter at an altitude of 6,000 ft sees a second helicopter is 4,000 ft. What is the distance from the first helicopter to the second along the line of sight?
6. What is the difference in altitude between the two helicopters ?
7. What trigonometric ratio will you use to find d ?
8. Substitute 43 for the angle measure and 2,000 for the opposite side
9. Multiply each side by d
10. Divide each side by sin 43 degrees
11. Use a calculator to simply

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Katresha Davis,

Please refer to the following diagram:

View attachment 1228

6.) We may find the difference in altitude between the two helicopters by subtracting the altitude of the lower helicopter from the altitude of the higher helicopter:

$$\Delta h=(6000-4000)\text{ ft}=2000\text{ ft}$$

7.) We know the side opposite the given angle, and we are wanting to find the hypotenuse, so we should use the sine function as it relates an angle, the side opposite the angle and the hypotenuse:

$$\sin(\theta)=\frac{\text{opposite}}{\text{hypotenuse}}$$

8.) Using the values in our problem, we may state:

$$\sin\left(43^{\circ} \right)=\frac{2000}{d}$$

9.) Multiplying both sides by $d$, we obtain:

$$d\sin\left(43^{\circ} \right)=2000$$

10.) Dividing both sides by $\sin\left(43^{\circ} \right)$, we get:

$$d=\frac{2000}{\sin\left(43^{\circ} \right)}$$

11.) Using a calculator, we find:

$$d\approx2932.55837127925\text{ ft}$$
 

Attachments

  • copter.jpg
    copter.jpg
    5.6 KB · Views: 81
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
125
Views
19K
Replies
3
Views
2K
Replies
62
Views
11K
Replies
16
Views
5K
Back
Top