Kepler's First law Polar to Cartesian

AI Thread Summary
The discussion revolves around converting Kepler's First Law from polar to Cartesian coordinates for plotting orbits in MatLab. The original polar equation works well, but the user struggles with the Cartesian conversion, initially using the standard ellipse equation. Key issues identified include the need to plot both halves of the ellipse and the difference in focus between the polar and Cartesian forms. The user resolves the problem by adjusting the Cartesian ellipse to be centered correctly, leading to a successful plot. The exchange highlights the importance of understanding the geometric properties of the equations involved.
Jman2150
Messages
2
Reaction score
0
Forgive me if this is in the wrong thread I'm new here.

I am trying to plot an orbit in MatLab using Kepler's First law of motion. In polar form it works fine r(θ) = h^2/μ*(1/(1+e*cos(θ)))

h = angular momentum μ = standard gravitational constant and e = eccentricity.

The problem is I'd like to have everything in Cartesian coordinates and I can't seem to get the conversion correct.

I thought it would just be the equation for an ellipse (x/a)^2+(y/b)^2=1 but that doesn't give me the right shape for some reason.

So if someone knows the direct conversion of Kepler's first law from polar to Cartesian coordinates I would very much appreciate the help.
 
Science news on Phys.org
Jman2150 said:
Forgive me if this is in the wrong thread I'm new here.

I am trying to plot an orbit in MatLab using Kepler's First law of motion. In polar form it works fine r(θ) = h^2/μ*(1/(1+e*cos(θ)))

h = angular momentum μ = standard gravitational constant and e = eccentricity.

The problem is I'd like to have everything in Cartesian coordinates and I can't seem to get the conversion correct.

I thought it would just be the equation for an ellipse (x/a)^2+(y/b)^2=1 but that doesn't give me the right shape for some reason.

What exactly do you mean by "doesn't give me the right shape?" What does it end up looking like?

There are a couple of things that could be a problem here. If you solve your cartesian equation for y so that you can plot it vs. x, you are going to get a square root. You need to separately plot both the positive and negative square roots in order to get both halves of the ellipse.

Another problem could be that the equation of the ellipse in polar form that you have is for an ellipse for which one focus is at the origin. In contrast, the equation for the ellipse in Cartesian coordinates that you have is for an ellipse whose centre is at the origin. I'm not sure if this shift is causing you difficulties.
 
Another thing is that it is a really straightforward conversion from your equation in polar form to one in Cartesian form. It's always true that x = rcosθ. Or cosθ = x/r So, you have thatr \propto \frac{1}{1 + ex/r}I find that if you just rearrange to solve for r, and then plug in r = \sqrt{x^2 + y^2} which is also always true, you get an equation for the same ellipse, with the correct shift relative to the origin.
 
Cepheid,

Thanks man. Turns out that it was because my Cartesian ellipse was centered at the origin. I made the correction and it works fine now.

Appreciate the help.
 
I need to calculate the amount of water condensed from a DX cooling coil per hour given the size of the expansion coil (the total condensing surface area), the incoming air temperature, the amount of air flow from the fan, the BTU capacity of the compressor and the incoming air humidity. There are lots of condenser calculators around but they all need the air flow and incoming and outgoing humidity and then give a total volume of condensed water but I need more than that. The size of the...
Thread 'Why work is PdV and not (P+dP)dV in an isothermal process?'
Let's say we have a cylinder of volume V1 with a frictionless movable piston and some gas trapped inside with pressure P1 and temperature T1. On top of the piston lay some small pebbles that add weight and essentially create the pressure P1. Also the system is inside a reservoir of water that keeps its temperature constant at T1. The system is in equilibrium at V1, P1, T1. Now let's say i put another very small pebble on top of the piston (0,00001kg) and after some seconds the system...

Similar threads

Back
Top