Kernel and Linear transformation

Hockeystar
Messages
61
Reaction score
0

Homework Statement


U = [Polynomial of degree 3 such that 3p(1) = p(0)]

Find the basis of U and find a linear transformation T: P3 ---> R such that U is the kernel of T.

Homework Equations


The Attempt at a Solution



The basis part is easy.
3p(1) = p(0)
3a + 3b + 3c +d = d
c= -b-a

Basis : {<1,0,-1,0>,<0,1,-1,0>,<0,0,0,1>}

The kernel part makes no sense (prof never went over this in class). I know kernel means T(v) = 0 Could the transformation just be R = {a-a, b-b, -(b+a) +(b+a), d-d}
 
Physics news on Phys.org
solve:

<1,0,-1,0> * x1 + <0,1,-1,0> * x2 + <0,0,0,1> * x3 = 0
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top