coolnessitself said:
So once I have an expansion in terms of a Fourier series or orthogonal polynomials over the disk, how do I then "take into account" the holes? Or is this not what you mean?
You only consider a basis for the full region where f(x,y) is known to be non-zero. Then you construct the orthogonal basis of polynomials for that region only. Of course this will mean that for analysis purposes you will not consider the fit outside this region.
Since I'm not familiar, do you know a name for these?
The thing is that for arbitrary intervals and functions, you will have to derive them yourself.
The basic idea is to use Gram-Schmidt processes and the L^2 formulation of the inner-product to construct the orthonormal basis.
The inner-product is used and interpreted in the same way as the inner-product of say an n-dimensional vector space with an inner-space product (in fact, the L^2 is just a vector-space in the same sense, but proving the results requires infinite-dimensional theory with Hilbert-spaces which is a little harder).
So the first thing is that you will have to construct a basis. To do this, start with a polynomial that you wish to use to project to. You will have to note that because you are in R^2, you will need to look at the appropriate theory for this if there are any issues (I have only done stuff in R myself, but I imagine it should be ok).
Then from this you create a basis by subtracting the projection from each term of the polynomial. So think of it as a basis of <a,bx,cx^2,dx^3,..> and so on in the analog of say <i,j,k> in the normal R^3 basis.
You then create an orthonormal basis for your interval of choice and normalize the basis so that it's unit length (i.e. <f,f> = 1 and <f,g> = 0 for all new orthonormal basis vectors in your space). You then project your data to each basis and your fit will be a linear combination of all projections with respect to the individual orthonormal basis vectors.
So if your orthonormal basis is <a0,a1,a2,a3...> in terms of the orthonormal polynomials and the projections of the data with respect to the orthonormal basis are <b0,b1,b2,b3...> then the fit will be given by a0b0 + a1b1 + a2b2 + a3b3 + ... where the b's are just real numbers and the a's are polynomials that satisfy <an,am> = 1 if n=m and 0 otherwise where <.,.> is the inner product.