Kinematic Question: Horizontal & Vertical Velocity Components

  • Thread starter Thread starter souzky21
  • Start date Start date
  • Tags Tags
    Kinematic
souzky21
Messages
3
Reaction score
0

Homework Statement


A golfball is hit with a velocity of 25m/s at an angle of 40 degrees above the horizontal. What are the horizontal and vertical components of the velocity?

i don't want the answer that's not my objective... just the correct formula cause I've been using all these mathematic equations which are getting me nowhere

Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
think of it as a triangle with the trajectory as the "hypotenuse". The x component would be vcosx and the vertical component would be vsinx
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top