Kinetic Energy Molecules Escaping Small Hole

AI Thread Summary
The discussion revolves around a homework problem involving a perfect gas escaping through a small hole in a container. The key points include the derivation of the number of molecules escaping per unit area per unit time, which is given by nC/4, and the expression for the rate of mass outflow. The main challenge faced is in part C, where the mean kinetic energy of the escaping molecules is to be shown as greater than that of the molecules inside the container in a ratio of 4/3. The participant has already established that the mean kinetic energy of the gas inside is (3/2)KT, but struggles with the integration process to find the kinetic energy of the escaping molecules. Assistance is sought to clarify the approach to solving this part of the problem.
TheAmorphist
Messages
4
Reaction score
0

Homework Statement


"A perfect gas containing a single species of molecular weight M is in a container at equilibrium. Gas escapes into a vacuum through a small circular hole of Area A in the wall of the container. Assume wall container is negligibly thick and planer in vicinity to hole. The diameter of the hale is appreciably smaller than the mean free path, but larger than molecular diameter.
a. Show that the number of molecules escaping from the hole per unit area per unit time is given by nC/4.
b.Obtain an expression for the rate of mass outflow.
(What I actually need help on)c. Show that the mean kinetic energy of the escaping molecules if greater than that of the molecules inside the container in the ratio of 4/3.

Homework Equations


The flux equation of F=(Int)nf(Ci)QCnDVc, where f(Ci) is the Maxwellian Velocity Distribution, Q is some quantity (energy here) and integration is performed over the range of velocity space of interest.

The Attempt at a Solution



I have completed the nitty gritty of parts a and b, but simply cannot make any progress on part C. I'm assuming that the gas "within the container" have a mean kinetic energy of (3/2)KT, as they have 3 degrees of freedom. My attempt at finding the kinetic energy of those escaping the hole has consisted of integrating the flux equation a number of times to find a constant factor that resulted in a ratio of "4/3" but I feel like this is in inappropriate way to go about this. Any help or at least pointing me in the right direction would be really helpful.
 
Physics news on Phys.org
Any help? Anybody? This question is from "Physical Gas Dynamics" by Vincenti and Krieger
 
I'm reposting this in the "Advanced Physics" forum. That is probably where it belonged to begin with. Can a moderator delete this topic?
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top