Kirchoff's Equation w/ 2 Batteries and 4 resistors

AI Thread Summary
The discussion focuses on solving a circuit problem involving two batteries and four resistors. The user initially struggles with applying Kirchhoff's laws to find the currents I1 and I3. After several attempts, it is suggested that the user needs to establish a consistent relationship between the currents using junction equations. The user ultimately finds the correct approach by creating three loop equations and correctly applying Kirchhoff's current law. The solution for I1 and I3 is achieved after clarifying the equations and relationships among the currents.
wizzleman
Messages
5
Reaction score
0

Homework Statement



The circuit in the figure is composed of two batteries (ε1 = 9.0 V and ε2 = 5.0 V) and four resistors (R1 = 110.0 Ω, R2 = 40.0 Ω, R3 = 30.0 Ω, and R4 = 50.0 Ω) as shown.

1). What is the current I1 which flows through R1?

2). What is the current I3 which flows through R3?

vgW4K.gif

Homework Equations



I used

ε1-R1I1+I2R2-R4I1-ε2=0

and

ε1-R1I1-R3I3-R4I1=0

The Attempt at a Solution



I've tried plugging in variables and attempting to solve for I3 but it's not the correct answer.
 
Physics news on Phys.org
wizzleman said:

Homework Statement



The circuit in the figure is composed of two batteries (ε1 = 9.0 V and ε2 = 5.0 V) and four resistors (R1 = 110.0 Ω, R2 = 40.0 Ω, R3 = 30.0 Ω, and R4 = 50.0 Ω) as shown.

1). What is the current I1 which flows through R1?

2). What is the current I3 which flows through R3?

vgW4K.gif

Homework Equations



I used

ε1-R1I1+I2R2-R4I1-ε2=0

and

ε1-R1I1-R3I3-R4I1=0

The Attempt at a Solution



I've tried plugging in variables and attempting to solve for I3 but it's not the correct answer.
Hello wizzleman. Welcome to PF !

What you have looks correct.

You need another equation --- or a method to avoid using I2.

How is I2 related to I1 and I3 ?
 
SammyS said:
Hello wizzleman. Welcome to PF !

What you have looks correct.

You need another equation --- or a method to avoid using I2.

How is I2 related to I1 and I3 ?

For the junction equation is I1= I2+I3 ?
 
wizzleman said:
For the junction equation is I1= I2+I3 ?
To make your equation, ε1-R1I1+I2R2-R4I1-ε2=0, correct, you need I1 + I2 = I3 .
 
SammyS said:
To make your equation, ε1-R1I1+I2R2-R4I1-ε2=0, correct, you need I1 + I2 = I3 .

Thanks for all the help so far, but I still can't get the answer.

I decided to make three loops

Left loop was ε1-R1I1+R2I22-R4I1=0

Right loop was ε2-R2I2-R3I3=0

And the whole loop was ε1-R1I1-R3I3-R4I1=0

Junction was I1=I2+I3

Solving through and using elimination I got up to 8V-320I1+80I2=0

How am I supposed to use the junction equations in here?
 
wizzleman said:
Thanks for all the help so far, but I still can't get the answer.

I decided to make three loops

Left loop was ε1-R1I1+R2I22-R4I1=0

Right loop was ε2-R2I2-R3I3=0

And the whole loop was ε1-R1I1-R3I3-R4I1=0

Junction was I1=I2+I3

Solving through and using elimination I got up to 8V-320I1+80I2=0

How am I supposed to use the junction equations in here?
Two loop equations plus the junction equation give three equations in three unknowns. That is enough to solve for the three unknowns. The addition loop equation is not independent of the other two.

Your junction equation is inconsistent with your Left Loop & Right Loop equations. Both loop equations are consistent with I2 flowing in the upward direction. That implies that I[1/SUB] + I2 = I3, as I said in post #4.

Solve that for I2: I2 = I3 - I1 .

Plug that into the equation for the right loop.

ε2 - R2(I3 - I1) - R3I3=0

This can be written:
ε2 + R2I1 - (R2+R3)I3 = 0

Use that with the "whole loop" equation:
ε1 - (R1 + R4)I1 - R3I3 = 0
 
Last edited:
The circuit is equivalent to this one. You can apply KCL to the bottom node to get an equation for the voltage across R3. Call that VR3

I3 + I2 + I1 = 0

VR3/R3 + (VR32)/R2 + (VR31)/R1+4 = 0

Solve for VR3

It's then easy to calculate all three currents.

Edite to make it clearer.
 

Attachments

  • vgW4K.png
    vgW4K.png
    1.3 KB · Views: 732
Thanks for all the help guys, I figured out the answers for I1 and I3.
 
Back
Top