Ladder operators for real scalar field

physichu
Messages
30
Reaction score
1
Puting a minus in front of the momentum in the field expansion gives

##\phi \left( {\bf{x}} \right) = \int {{d^3}\tilde p} \left( {{a_{\bf{p}}}{e^{i{\bf{p}} \cdot {\bf{x}}}} + a_{\bf{p}}^ + {e^{ - i{\bf{p}} \cdot {\bf{x}}}}} \right){\rm{ }}\phi \left( {\bf{x}} \right) = \int {{d^3}\tilde p} \left( {{a_{ - {\bf{p}}}}{e^{ - i{\bf{p}} \cdot {\bf{x}}}} + a_{ - {\bf{p}}}^ + {e^{i{\bf{p}} \cdot {\bf{x}}}}} \right)##.

Is this implise that

##a_{ - {\bf{p}}}^ + = {a_{{\bf{p}}{\rm{ }}}}## ##{a_{ - {\bf{p}}}} = a_{\bf{p}}^ + ## ?

Becuse if so

##\displaylines{
\pi \left( {\bf{x}} \right) = - i\int {{{{d^3}p} \over {{{\left( {2\pi } \right)}^3}}}\sqrt {{{{\omega _{\bf{p}}}} \over 2}} \left( {{a_{\bf{p}}}{e^{i{\bf{p}} \cdot {\bf{x}}}} - a_{\bf{p}}^ + {e^{ - i{\bf{p}} \cdot {\bf{x}}}}} \right)} = \cr
= - i\int {{{{d^3}p} \over {{{\left( {2\pi } \right)}^3}}}\sqrt {{{{\omega _{\bf{p}}}} \over 2}} \left( {{a_{\bf{p}}}{e^{i{\bf{p}} \cdot {\bf{x}}}} - a_{ - {\bf{p}}}^{}{e^{ - i{\bf{p}} \cdot {\bf{x}}}}} \right) = } \cr
= - i\int {{{{d^3}p} \over {{{\left( {2\pi } \right)}^3}}}\sqrt {{{{\omega _{\bf{p}}}} \over 2}} \left( {{a_{\bf{p}}}{e^{i{\bf{p}} \cdot {\bf{x}}}} - a_{\bf{p}}^{}{e^{i{\bf{p}} \cdot {\bf{x}}}}} \right)} = 0 \cr} ##

Wich is obviosly wrong, Where is the mistake?
 
Physics news on Phys.org
physichu said:
Is this implise that

##a_{ - {\bf{p}}}^ + = {a_{{\bf{p}}{\rm{ }}}}## ##{a_{ - {\bf{p}}}} = a_{\bf{p}}^ + ## ?
No, why should it?
The first term on the left side gets transformed to the first one on the right side, and the second term gets transformed to the second one.
Just a transformation p -> -p, no physics involved in that step. The integral is over the whole space anyway so integration limits don't change.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top