Ladder operators in Klein -Gordon canonical quantisation

spaghetti3451
Messages
1,311
Reaction score
31
The quantum Klein-Gordon field ##\phi({\bf{x}})## and its momentum density ##\pi({\bf{x}})## are given in Fourier space by

##\phi({\bf{x}}) = \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{\sqrt{2 \omega_{{\bf{p}}}}} \big( a_{{\bf{p}}} e^{i{\bf{p}} \cdot {\bf{x}}} + a^{\dagger}_{{\bf{p}}} e^{-i{\bf{p}} \cdot {\bf{x}}} \big)## and

##\pi({\bf{x}}) = \int \frac{d^{3}p}{(2\pi)^{3}} (-i) \sqrt{\frac{ \omega_{{\bf{p}}}}{2}} \big( a_{{\bf{p}}} e^{i{\bf{p}} \cdot {\bf{x}}} - a^{\dagger}_{{\bf{p}}} e^{-i{\bf{p}} \cdot {\bf{x}}} \big)##.

[These are equations (2.25) and (2.26) from the Peskin and Schroeder.]

Now, I used the substitution ##{\bf{p}} \rightarrow {\bf{-p}}## in the expression for ##\phi({\bf{x}})## and obtained

##a_{{\bf{p}}} = a^{\dagger}_{-{\bf{p}}}## and ##a_{-{\bf{p}}} = a^{\dagger}_{{\bf{p}}}##.

On the other hand, I used the same substitution ##{\bf{p}} \rightarrow {\bf{-p}}## in the expression for ##\phi({\bf{x}})## and obtained

##a_{{\bf{p}}} = - a^{\dagger}_{-{\bf{p}}}## and ##a_{-{\bf{p}}} = - a^{\dagger}_{{\bf{p}}}##.

Can someone explain what's going on?
 
Last edited:
Physics news on Phys.org
There is a - missing in the second term of ##\Pi(\vec{p})##. That's seen in the Heisenberg picture and the relation ##\Pi=\dot{\phi}##.
 
Sorry, that's my own mistake. Peskin and Schroeder has the minus sign. I've made the edit now.
 
Actually, with the minus sign in the second term of ##\pi({\bf{x}})##, I get the inconsistency in the ladder operators.

Does your second sentence solve the inconsistency or justify the minus sign in the second term?
 
I don't understand, how you get these equations in the first place. The ##\hat{a}_{\vec{p}}## are an independent set of annihilation operators. There shouldn't be a relation between ##\hat{a}_{\vec{p}}## and ##\hat{a}_{-\vec{p}}^{\dagger}##.
 
Well, under the substitution ##{\bf{p}} \rightarrow {\bf{-p}}##,

##\phi({\bf{x}}) = \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{\sqrt{2 \omega_{{\bf{p}}}}} \big( a_{{\bf{p}}} e^{i{\bf{p}} \cdot {\bf{x}}} + a^{\dagger}_{{\bf{p}}} e^{-i{\bf{p}} \cdot {\bf{x}}} \big)##

becomes

##\phi({\bf{x}}) = \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{\sqrt{2 \omega_{{-\bf{p}}}}} \big( a_{-{\bf{p}}} e^{-i{\bf{p}} \cdot {\bf{x}}} + a^{\dagger}_{-{\bf{p}}} e^{i{\bf{p}} \cdot {\bf{x}}} \big)##,

and then I compared the coefficients of the exponential ##e^{-i{\bf{p}} \cdot {\bf{x}}}## on both sides to obtain ##a^{\dagger}_{{\bf{p}}} = a_{-{\bf{p}}}## and the coefficients of the exponential ##e^{i{\bf{p}} \cdot {\bf{x}}}## on both sides to obtain ##a_{{\bf{p}}} = a^{\dagger}_{-{\bf{p}}}##.

But now that you mention it, I'm beginning to think my argument is wrong. The creation and annihilation operators are, in fact, independent of each other, i.e. for instance, ##a_{{\bf{p}}} e^{i{\bf{p}} \cdot {\bf{x}}}## is the same as ##a_{-{\bf{p}}} e^{-i{\bf{p}} \cdot {\bf{x}}}## because the integration is over the entire range of momenta from ##-\infty## to ##\infty##.

Am I correct?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top