Lagrangian explicitly preserves symmetries of a theory?

copernicus1
Messages
98
Reaction score
0
How are the Hamiltonian and Lagrangian different as far as preserving symmetries of a theory? Peskin and Schroeder write that the path integral formalism is nice because since it's based on the action and Lagrangian it explicitly preserves all the symmetries, but I'm wondering how/why the Hamiltonian doesn't. I know H isn't invariant under Lorentz transformations, but isn't it true that quantities commuting with H are conserved? So can't you find other symmetries of the system this way using the Hamiltonian? Or are they mainly referring to the Lorentz invariance of the Lagrangian (density) and action?

Thanks!
 
Physics news on Phys.org
The two formalisms are equivalent. However, the hamiltonian formulation singles out the time variable through the definition of the canonical momentum. Any time you single something out you break a symmetry. However, while explicit lorentz invariance is broken by this, it can be recovered.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top