A Lagrangian Multipliers with messy Solution

  • A
  • Thread starter Thread starter Mishal0488
  • Start date Start date
  • Tags Tags
    Lagrangian
AI Thread Summary
The discussion revolves around applying Lagrangian multipliers to a mechanical system involving kinetic and potential energy equations alongside a holonomic constraint. The user has derived four equations corresponding to each coordinate but is uncertain about the next steps in solving them. They mention the challenge of handling squared terms that lead to two equations when isolating a variable. The user seeks assistance in developing the system of equations further, with the intention of using the Runge-Kutta method for simulation. The conversation highlights the complexities of Lagrangian mechanics, particularly for those with limited formal training in the subject.
Mishal0488
Messages
20
Reaction score
1
Hi Guys

Please refer to the attached file.
I have not included any of the derivatives or partial derivatives as it does get messy, I just just included the kinetic and potential energy equations and the holonomic constraint.

The holonomic constraint can be considered using Lagrange multipliers. The result is 4 equations, one for each coordinate and the holonomic constraint.

I am not sure what to do once I am at this point, can someone please assist?
With regards to the holonomic constraint, I can make one of the variables the subject of the formula, however due to the squared terms there are two equations which will arise.

Kind regards
Mishal Mohanlal
 

Attachments

Physics news on Phys.org
look like a known problem in solid state physics but i am not able to remember it now did you try matrix method for differential equations
 
Why solid state physics? The image is a mechanical system which I am trying to simulate.

Note that I am an engineer and my understanding of Lagrangian mechanics is limited since it is not taught as part of engineering. I have learned through self study.

I was hoping to develop the system of equations and thereafter solve it using Runge Kutta
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Let there be a person in a not yet optimally designed sled at h meters in height. Let this sled free fall but user can steer by tilting their body weight in the sled or by optimal sled shape design point it in some horizontal direction where it is wanted to go - in any horizontal direction but once picked fixed. How to calculate horizontal distance d achievable as function of height h. Thus what is f(h) = d. Put another way, imagine a helicopter rises to a height h, but then shuts off all...
Back
Top