How Do You Derive the Lagrangian for a Circuit with Repeated Cells?

T-7
Messages
62
Reaction score
0
Hello folks,

I could really do with a few hints with this. (As soon as possible!)

Homework Statement



For a repeated line of cells, two 'equations of motion' can be written:

C_{n}\dot{U_{n+1}} = I_{n}-I_{n+1}
L_{n}\dot{I_{n}} = U_{n} - U_{n+1}

where C_{n} is the capacitance, U_{n+1} the voltage after the nth cell, I_{n}-I_{n+1} the charging current, L_{n} the inductance.

Work out the Lagrangian that generated these equations.

You should find that

E = \sum_{n}\left( (1/2)\L_{n}\dot{Q_{n}}^{2} + (1/2)C_{n}U_{n+1}^{2} \right)

and

H = (1/2)\sum_{n}\left( \frac{P_{n}^{2}}{L_n}} + \frac{(Q_{n+1}-Q_{n})^{2}}{C_{n}} \right)

Homework Equations



Note that
Q_{n} = -\int I_{n} dt => C_{n}U_{n+1} = Q_{n+1} - Q_{n}

The Attempt at a Solution



I have suggested a Lagrangian of

L = (1/2)L_{n}\dot{Q_{n}}^{2} + Q_{n}(U_{n+1}-U_{n}) + (1/2)C_{n}\dot{U_{n+1}^{2}} + U_{n+1}(I_{n}-I_{n+1})

(which can be turned into a sum for all the repeated circuits)

but it doesn't seem convincing, despite the fact that you can recover the original 'equations of motion' using Euler-Lagrange equations (using Q and U).

I'm not sure how the energy is being derived from the Lag. in this case (in mechanics, it was always the case that L = T - U, hence E = T + U), and it seems clear that you aren't going to get either that expression for the energy or that Hamiltonian from my guess-work Lagrangian.

Any suggestions?

Many thanks!
 
Physics news on Phys.org
I don't think Ulf would like this any more than Chris.
 
Anony-mouse said:
I don't think Ulf would like this any more than Chris.

What?
 
malawi_glenn said:
What?

I think Anony. is under the impression that, being part of a set Q, this isn't up for discussion. According to the tutor I asked, we *can* discuss these Qs with other Physicists, exchange ideas, argue, etc. What we're not allowed to do is just copy someone's answer (which PhysicsForums also prohibits).
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top