rouge89
- 2
- 0
I am wondering, how does lagrangian of such system look like?
Will it be:
L=\frac{m_{1} \cdot \dot{y}^2}{2} + \frac{m_{2} \cdot \dot{x}^2}{2} +\frac{m_{3} \cdot (\dot{y'}^2+\dot{x'}^2)}{2} + \frac{I \cdot \dot{ \alpha }^2}{2} - mgy - mgy'
where:
y'=\frac{l}{2}sin(\alpha)
x'=\frac{l}{2}cos(\alpha) ?
Will it be:
L=\frac{m_{1} \cdot \dot{y}^2}{2} + \frac{m_{2} \cdot \dot{x}^2}{2} +\frac{m_{3} \cdot (\dot{y'}^2+\dot{x'}^2)}{2} + \frac{I \cdot \dot{ \alpha }^2}{2} - mgy - mgy'
where:
y'=\frac{l}{2}sin(\alpha)
x'=\frac{l}{2}cos(\alpha) ?