AbigailM
- 46
- 0
Preparing for classical prelim, just wondering if this solution is correct.
A particle with mass m and charge q moves in a uniform magnetic field \boldsymbol{B}=B\boldsymbol{\hat{z}}. Write a Lagrangian describing the motion of the particle in the xy plane that gives the correct Lorentz-force equation of motion,
m\mathbf{a}=q\mathbf{v}\times\mathbf{B}
L=T - U
\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right)=\frac{\partial L}{\partial q}
\boldsymbol{B}=\boldsymbol{\nabla \times A}
\boldsymbol{E}=-\boldsymbol{\nabla}\phi +\frac{\partial \boldsymbol{A}}{\partial t}
I'm going to start with the complete lorentz force and remove the electric potential from the lagrangian later.
\mathbf{F}=q(\mathbf{E}+\mathbf{v}\times\mathbf{B})
\mathbf{F}=q(\mathbf{E}+\mathbf{v}\times (\boldsymbol{\nabla \times A}))
\mathbf{F}=q(\mathbf{E}+\boldsymbol{\nabla} (\mathbf{v.A})-\boldsymbol{A}(\boldsymbol{\nabla . v}))
\mathbf{F}=q(-\boldsymbol{\nabla}\phi+\frac{\partial\boldsymbol{A}}{\partial t}+\boldsymbol{\nabla}(\boldsymbol{v.A})-\boldsymbol{A}(\boldsymbol{\nabla v}))
U=q(\phi -\boldsymbol{v.A})=q\phi-q\boldsymbol{v.A}
We are only interested in the magnetic field so we'll ignore q\phi.
U=q\boldsymbol{v.A}
L=\frac{1}{2}mv^{2} + q\boldsymbol{v.A} \hspace{2 mm}\mathbf{:Answer}
As always thanks for the help!
Homework Statement
A particle with mass m and charge q moves in a uniform magnetic field \boldsymbol{B}=B\boldsymbol{\hat{z}}. Write a Lagrangian describing the motion of the particle in the xy plane that gives the correct Lorentz-force equation of motion,
m\mathbf{a}=q\mathbf{v}\times\mathbf{B}
Homework Equations
L=T - U
\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right)=\frac{\partial L}{\partial q}
\boldsymbol{B}=\boldsymbol{\nabla \times A}
\boldsymbol{E}=-\boldsymbol{\nabla}\phi +\frac{\partial \boldsymbol{A}}{\partial t}
The Attempt at a Solution
I'm going to start with the complete lorentz force and remove the electric potential from the lagrangian later.
\mathbf{F}=q(\mathbf{E}+\mathbf{v}\times\mathbf{B})
\mathbf{F}=q(\mathbf{E}+\mathbf{v}\times (\boldsymbol{\nabla \times A}))
\mathbf{F}=q(\mathbf{E}+\boldsymbol{\nabla} (\mathbf{v.A})-\boldsymbol{A}(\boldsymbol{\nabla . v}))
\mathbf{F}=q(-\boldsymbol{\nabla}\phi+\frac{\partial\boldsymbol{A}}{\partial t}+\boldsymbol{\nabla}(\boldsymbol{v.A})-\boldsymbol{A}(\boldsymbol{\nabla v}))
U=q(\phi -\boldsymbol{v.A})=q\phi-q\boldsymbol{v.A}
We are only interested in the magnetic field so we'll ignore q\phi.
U=q\boldsymbol{v.A}
L=\frac{1}{2}mv^{2} + q\boldsymbol{v.A} \hspace{2 mm}\mathbf{:Answer}
As always thanks for the help!