Lagrangian Problem (Find Relation between Amplitude and Momentum)

Click For Summary

Homework Help Overview

The discussion revolves around a Lagrangian system described by the equation $$L = 1-\sqrt{1-\dot{q}^2}-\frac{q^2}{2}$$, where the goal is to find a relationship between the amplitude of oscillations, denoted as ##A##, and the momentum ##p## of the particle. Participants are exploring how to connect the derived momentum expression to the amplitude.

Discussion Character

  • Exploratory, Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants discuss calculating momentum from the Lagrangian and deriving the Hamiltonian. There is uncertainty about how to relate the momentum to the amplitude of oscillations. Questions arise regarding the dimensionality of ##q## and its implications for defining amplitude.

Discussion Status

Some participants have provided insights on relating amplitude to the Hamiltonian and the maximum value of ##q##. Others have expressed uncertainty about the assumptions being made regarding the dimensions of ##q## and the nature of the momentum involved.

Contextual Notes

There is mention of the problem not aligning with basic systems like harmonic oscillators, and a note that the momentum may not be canonical, which could affect the application of certain formulas. The discussion also references an answer key, but participants remain unsure about the derivation process.

Wannabe Physicist
Messages
17
Reaction score
3
Homework Statement
Consider the Lagrangian $$L = 1-\sqrt{1-\dot{q}^2}-\frac{q^2}{2}$$ of a particle executing oscillations whose amplitude is ##A## . If ##p## denotes the momentum of
the particle, then ##4p^2## is

a) ##(A^2-q^2)(4+A^2-q^2)##
b) ##(A^2+q^2)(4+A^2-q^2)##
c) ##(A^2-q^2)(4+A^2+q^2)##
d) ##(A^2+q^2)(4+A^2+q^2)##
Relevant Equations
1) ##p = \frac{\partial L}{\partial \dot{q}}##
2) [not sure if this is relevant] ##H = \left(\Sigma_{i} p_i \dot{q}_i\right) - L##
The given lagrangian doesn't seem to correspond to any of the basic systems (like simple/ coupled harmonic oscillators, etc). So I calculated the momentum ##p## which is the partial derivative of ##L## with respect to generalized velocity ##\dot{q}##. Doing so I obtain
$$p = \frac{\dot{q}}{\sqrt{1-\dot{q}^2}}$$
Now, I am facing this problem: I do not know how to relate this to the amplitude of the oscillations.

In the hopes of getting a direction or line of thought to follow, I tried writing the Hamiltonian of this system, which is obtained by rewriting the above equation for ##p=p(\dot{q})## in the form ##\dot{q} = \dot{q}(p) = \displaystyle{\frac{p^2}{1+p^2}}## and substituting it in the equation (2) in the "relevant equations" listed above. I found
$$H = \sqrt{1+p^2} +\frac{q^2}{2}$$

But I am still not sure how to proceed.

After trying all of the above I looked up the answer key and the correct option is (a). But I am not sure how to get the answer.
 
Last edited:
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
Wannabe Physicist said:
Homework Statement:: Consider the Lagrangian $$L = 1-\sqrt{1-\dot{q}^2}-\frac{q^2}{2}$$ of a particle executing oscillations whose amplitude is ##A## . If ##p## denotes the momentum of
the particle, then ##4p^2## is

a) ##(A^2-q^2)(4+A^2-q^2)##
b) ##(A^2+q^2)(4+A^2-q^2)##
c) ##(A^2-q^2)(4+A^2+q^2)##
d) ##(A^2+q^2)(4+A^2+q^2)##
Relevant Equations:: 1) ##p = \frac{\partial L}{\partial \dot{q}}##
2) [not sure if this is relevant] ##H = \left(\Sigma_{i} p_i \dot{q}_i\right) - L##

The given lagrangian doesn't seem to correspond to any of the basic systems (like simple/ coupled harmonic oscillators, etc). So I calculated the momentum ##p## which is the partial derivative of ##L## with respect to generalized velocity ##\dot{q}##. Doing so I obtain
$$p = \frac{\dot{q}}{\sqrt{1-\dot{q}^2}}$$
Now, I am facing this problem: I do not know how to relate this to the amplitude of the oscillations.

In the hopes of getting a direction or line of thought to follow, I tried writing the Hamiltonian of this system, which is obtained by rewriting the above equation for ##p=p(\dot{q})## in the form ##\dot{q} = \dot{q}(p) = \displaystyle{\frac{p^2}{1+p^2}}## and substituting it in the equation (2) in the "relevant equations" listed above. I found
$$H = \sqrt{1+p^2} +\frac{q^2}{2}$$

But I am still not sure how to proceed.

After trying all of the above I looked up the answer key and the correct option is (a). But I am not sure how to get the answer.
I think you're almost there. You have an expression for ##H## in terms of ##p## and ##q##. The definition of "amplitude" here is that ##A = q_{max}##, the maximum value of ##q##, which occurs when ##p = 0##. So you can relate ##A## to ##H##, which allows you to relate ##A##, ##p## and ##q##.
 
  • Like
Likes   Reactions: Wannabe Physicist and Delta2
Yes! I had thought of that! But then am I not presuming that ##q## has dimensions of position?
 
Wannabe Physicist said:
Yes! I had thought of that! But then am I not presuming that ##q## has dimensions of position?
I see it now. I was assuming the amplitude itself has dimensions of position. Thanks for helping @stevendaryl !
 
Wannabe Physicist said:
Yes! I had thought of that! But then am I not presuming that ##q## has dimensions of position?

I don't think it matters what the units of ##q## are. It only matters that ##A## means the maximum value of ##q##. I actually had never heard of the word "amplitude" applied to situations other than sines and cosines, but I suppose it makes sense for more complicated functions, as well.
 
Wannabe Physicist said:
Homework Statement: Consider the Lagrangian $$L = 1-\sqrt{1-\dot{q}^2}-\frac{q^2}{2}$$ of a particle executing oscillations whose amplitude is ##A## . If ##p## denotes the momentum of
the particle, then ##4p^2## is

a) ##(A^2-q^2)(4+A^2-q^2)##
b) ##(A^2+q^2)(4+A^2-q^2)##
c) ##(A^2-q^2)(4+A^2+q^2)##
d) ##(A^2+q^2)(4+A^2+q^2)##
Relevant Equations: 1) ##p = \frac{\partial L}{\partial \dot{q}}##
2) [not sure if this is relevant] ##H = \left(\Sigma_{i} p_i \dot{q}_i\right) - L##

The given lagrangian doesn't seem to correspond to any of the basic systems (like simple/ coupled harmonic oscillators, etc). So I calculated the momentum ##p## which is the partial derivative of ##L## with respect to generalized velocity ##\dot{q}##. Doing so I obtain
$$p = \frac{\dot{q}}{\sqrt{1-\dot{q}^2}}$$
Now, I am facing this problem: I do not know how to relate this to the amplitude of the oscillations.

In the hopes of getting a direction or line of thought to follow, I tried writing the Hamiltonian of this system, which is obtained by rewriting the above equation for ##p=p(\dot{q})## in the form ##\dot{q} = \dot{q}(p) = \displaystyle{\frac{p^2}{1+p^2}}## and substituting it in the equation (2) in the "relevant equations" listed above. I found
$$H = \sqrt{1+p^2} +\frac{q^2}{2}$$

But I am still not sure how to proceed.

After trying all of the above I looked up the answer key and the correct option is (a). But I am not sure how to get the answer.
It is not said that the momentum is canonical therefore you can not use the canonical momentum formula
 
sandeep_bhnaja said:
It is not said that the momentum is canonical therefore you can not use the canonical momentum formula
It may be worth noting that the thread is well over 2 years old!
 
  • Like
Likes   Reactions: jim mcnamara

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
7
Views
6K