Lagrangian Problem (Find Relation between Amplitude and Momentum)

Wannabe Physicist
Messages
17
Reaction score
3
Homework Statement
Consider the Lagrangian $$L = 1-\sqrt{1-\dot{q}^2}-\frac{q^2}{2}$$ of a particle executing oscillations whose amplitude is ##A## . If ##p## denotes the momentum of
the particle, then ##4p^2## is

a) ##(A^2-q^2)(4+A^2-q^2)##
b) ##(A^2+q^2)(4+A^2-q^2)##
c) ##(A^2-q^2)(4+A^2+q^2)##
d) ##(A^2+q^2)(4+A^2+q^2)##
Relevant Equations
1) ##p = \frac{\partial L}{\partial \dot{q}}##
2) [not sure if this is relevant] ##H = \left(\Sigma_{i} p_i \dot{q}_i\right) - L##
The given lagrangian doesn't seem to correspond to any of the basic systems (like simple/ coupled harmonic oscillators, etc). So I calculated the momentum ##p## which is the partial derivative of ##L## with respect to generalized velocity ##\dot{q}##. Doing so I obtain
$$p = \frac{\dot{q}}{\sqrt{1-\dot{q}^2}}$$
Now, I am facing this problem: I do not know how to relate this to the amplitude of the oscillations.

In the hopes of getting a direction or line of thought to follow, I tried writing the Hamiltonian of this system, which is obtained by rewriting the above equation for ##p=p(\dot{q})## in the form ##\dot{q} = \dot{q}(p) = \displaystyle{\frac{p^2}{1+p^2}}## and substituting it in the equation (2) in the "relevant equations" listed above. I found
$$H = \sqrt{1+p^2} +\frac{q^2}{2}$$

But I am still not sure how to proceed.

After trying all of the above I looked up the answer key and the correct option is (a). But I am not sure how to get the answer.
 
Last edited:
Physics news on Phys.org
Wannabe Physicist said:
Homework Statement:: Consider the Lagrangian $$L = 1-\sqrt{1-\dot{q}^2}-\frac{q^2}{2}$$ of a particle executing oscillations whose amplitude is ##A## . If ##p## denotes the momentum of
the particle, then ##4p^2## is

a) ##(A^2-q^2)(4+A^2-q^2)##
b) ##(A^2+q^2)(4+A^2-q^2)##
c) ##(A^2-q^2)(4+A^2+q^2)##
d) ##(A^2+q^2)(4+A^2+q^2)##
Relevant Equations:: 1) ##p = \frac{\partial L}{\partial \dot{q}}##
2) [not sure if this is relevant] ##H = \left(\Sigma_{i} p_i \dot{q}_i\right) - L##

The given lagrangian doesn't seem to correspond to any of the basic systems (like simple/ coupled harmonic oscillators, etc). So I calculated the momentum ##p## which is the partial derivative of ##L## with respect to generalized velocity ##\dot{q}##. Doing so I obtain
$$p = \frac{\dot{q}}{\sqrt{1-\dot{q}^2}}$$
Now, I am facing this problem: I do not know how to relate this to the amplitude of the oscillations.

In the hopes of getting a direction or line of thought to follow, I tried writing the Hamiltonian of this system, which is obtained by rewriting the above equation for ##p=p(\dot{q})## in the form ##\dot{q} = \dot{q}(p) = \displaystyle{\frac{p^2}{1+p^2}}## and substituting it in the equation (2) in the "relevant equations" listed above. I found
$$H = \sqrt{1+p^2} +\frac{q^2}{2}$$

But I am still not sure how to proceed.

After trying all of the above I looked up the answer key and the correct option is (a). But I am not sure how to get the answer.
I think you're almost there. You have an expression for ##H## in terms of ##p## and ##q##. The definition of "amplitude" here is that ##A = q_{max}##, the maximum value of ##q##, which occurs when ##p = 0##. So you can relate ##A## to ##H##, which allows you to relate ##A##, ##p## and ##q##.
 
  • Like
Likes Wannabe Physicist and Delta2
Yes! I had thought of that! But then am I not presuming that ##q## has dimensions of position?
 
Wannabe Physicist said:
Yes! I had thought of that! But then am I not presuming that ##q## has dimensions of position?
I see it now. I was assuming the amplitude itself has dimensions of position. Thanks for helping @stevendaryl !
 
Wannabe Physicist said:
Yes! I had thought of that! But then am I not presuming that ##q## has dimensions of position?

I don't think it matters what the units of ##q## are. It only matters that ##A## means the maximum value of ##q##. I actually had never heard of the word "amplitude" applied to situations other than sines and cosines, but I suppose it makes sense for more complicated functions, as well.
 
Wannabe Physicist said:
Homework Statement: Consider the Lagrangian $$L = 1-\sqrt{1-\dot{q}^2}-\frac{q^2}{2}$$ of a particle executing oscillations whose amplitude is ##A## . If ##p## denotes the momentum of
the particle, then ##4p^2## is

a) ##(A^2-q^2)(4+A^2-q^2)##
b) ##(A^2+q^2)(4+A^2-q^2)##
c) ##(A^2-q^2)(4+A^2+q^2)##
d) ##(A^2+q^2)(4+A^2+q^2)##
Relevant Equations: 1) ##p = \frac{\partial L}{\partial \dot{q}}##
2) [not sure if this is relevant] ##H = \left(\Sigma_{i} p_i \dot{q}_i\right) - L##

The given lagrangian doesn't seem to correspond to any of the basic systems (like simple/ coupled harmonic oscillators, etc). So I calculated the momentum ##p## which is the partial derivative of ##L## with respect to generalized velocity ##\dot{q}##. Doing so I obtain
$$p = \frac{\dot{q}}{\sqrt{1-\dot{q}^2}}$$
Now, I am facing this problem: I do not know how to relate this to the amplitude of the oscillations.

In the hopes of getting a direction or line of thought to follow, I tried writing the Hamiltonian of this system, which is obtained by rewriting the above equation for ##p=p(\dot{q})## in the form ##\dot{q} = \dot{q}(p) = \displaystyle{\frac{p^2}{1+p^2}}## and substituting it in the equation (2) in the "relevant equations" listed above. I found
$$H = \sqrt{1+p^2} +\frac{q^2}{2}$$

But I am still not sure how to proceed.

After trying all of the above I looked up the answer key and the correct option is (a). But I am not sure how to get the answer.
It is not said that the momentum is canonical therefore you can not use the canonical momentum formula
 
sandeep_bhnaja said:
It is not said that the momentum is canonical therefore you can not use the canonical momentum formula
It may be worth noting that the thread is well over 2 years old!
 
  • Like
Likes jim mcnamara
Back
Top