Charged Scalar Field Lagrangian Problem: Hawking, Ellis

  • Thread starter Thread starter Nikos
  • Start date Start date
  • Tags Tags
    Lagrangian
Nikos
Messages
11
Reaction score
0
Hi,there! Here is the lagrangian for a charged scalar field http://www.photodump.com/direct/Bbking22/P-meson-Lagrangian.jpg as it can be found in “the large scale structure of space-time” Hawking, Ellis on page 68. It seem’s that I have problem varying Aa on the lagrangian because I get http://www.photodump.com/direct/Bbking22/P-meson-Myresult.jpg , while the result of the book is http://www.photodump.com/direct/Bbking22/P-meson-AmVar.jpg . Does anyone have the same problem? Does anyone gets the book’s result? Thanks for the help. Here are all the results for this example http://www.photodump.com/direct/Bbking22/Example3.jpg .
 
Last edited by a moderator:
Physics news on Phys.org
I seem to get the same result as you. Below are my calculations, which I have done in flat so that I could use familiar notation. I haven't checked my calculations very closely, so I could easily have made a mistake.

Have you looked in a quantum field theory book? Almost all books should include a flat space version of this. I don't have any physics books with me right now, so I can't check.

Regards,
George

<br /> L=-\frac{1}{2}\left( \partial_{a}\psi+ieA_{a}\psi\right) g^{ab}\left(<br /> \partial_{b}\overline{\psi}-ieA_{b}\overline{\psi}\right) -\frac{1}{2}<br /> \frac{m^{2}}{\hbar^{2}}\psi\overline{\psi}-\frac{1}{16\pi}F_{ab}F_{cd}<br /> g^{ac}g^{bd}<br />

<br /> \begin{align*}<br /> \frac{\partial L}{\partial A_{f}} &amp; =-\frac{1}{2}ie\delta_{a}^{f}\psi<br /> g^{ab}\left( \partial_{b}\overline{\psi}-ieA_{b}\overline{\psi}\right)<br /> +\frac{1}{2}\left( \partial_{a}\psi+ieA_{a}\psi\right) g^{ab}ie\delta<br /> _{b}^{f}\overline{\psi}\\<br /> &amp; =-\frac{1}{2}ie\psi g^{fb}\left( \partial_{b}\overline{\psi}-ieA_{b}<br /> \overline{\psi}\right) +\frac{1}{2}\left( \partial_{a}\psi+ieA_{a}<br /> \psi\right) g^{af}ie\overline{\psi}<br /> \end{align*}<br />

<br /> \begin{align*}<br /> \frac{\partial L}{\partial\left( \partial_{n}A_{f}\right) } &amp; =-\frac<br /> {1}{16\pi}\left[ \frac{\partial F_{ab}}{\partial\left( \partial_{n}<br /> A_{f}\right) }F_{cd}+F_{ab}\frac{\partial F_{cd}}{\partial\left(<br /> \partial_{n}A_{f}\right) }\right] g^{ac}g^{bd}\\<br /> &amp; =-\frac{1}{16\pi}\left[ \frac{\partial}{\partial\left( \partial_{n}<br /> A_{f}\right) }\left( \partial_{a}A_{b}-\partial_{b}A_{a}\right)<br /> F_{cd}+F_{ab}\frac{\partial}{\partial\left( \partial_{n}A_{f}\right)<br /> }\left( \partial_{c}A_{d}-\partial_{d}A_{c}\right) \right] g^{ac}g^{bd}\\<br /> &amp; =-\frac{1}{16\pi}\left[ \left( \delta_{a}^{n}\delta_{b}^{f}-\delta_{b}<br /> ^{n}\delta_{a}^{f}\right) F_{cd}+F_{ab}\left( \delta_{c}^{n}\delta_{d}<br /> ^{f}-\delta_{d}^{n}\delta_{c}^{f}\right) \right] g^{ac}g^{bd}\\<br /> &amp; =-\frac{1}{16\pi}\left[ \left( g^{nc}g^{fd}-g^{fc}g^{nd}\right)<br /> F_{cd}+F_{ab}\left( g^{an}g^{bf}-g^{af}g^{bn}\right) \right] \\<br /> &amp; =-\frac{1}{16\pi}\left[ F^{nf}-F^{fn}+F^{nf}-F^{fn}\right] \\<br /> &amp; =-\frac{1}{4\pi}F^{nf}<br /> \end{align*}<br />

<br /> \begin{align*}<br /> 0 &amp; =\frac{\partial L}{\partial A_{f}}-\partial_{n}\frac{\partial L}{\partial\left(<br /> \partial_{n}A_{f}\right) }\\<br /> &amp; =-\frac{1}{2}ie\psi\left( \partial^{f}\overline{\psi}-ieA^{f}\overline<br /> {\psi}\right) +\frac{1}{2}\left( \partial^{f}\psi+ieA^{f}\psi\right)<br /> ie\overline{\psi}+\frac{1}{4\pi}\partial_{n}F^{nf}<br /> \end{align*}<br />
 
Thank you very much George!
 
There's no 1/2 in the lagrangian in the first place. For SED in flat spacetime one has the action

S^{SED}\left[A_{\mu},\phi,\phi^{*}\right]= \int \ d^{4}x \ \left[\left(D^{\mu}\phi\right)\left(D_{\mu}\phi\right)^{*} -\frac{1}{4} F^{\mu\nu}F_{\mu\nu}-\mu^{2}\phi\phi^{*}\right]

Daniel.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top