jbriggs444 said:
Any trajectory other than the straight and level, constant speed one is going to involve an expenditure of additional energy to deal with wind resistance. With no energy sources in sight, the required energy cannot be supplied. And that dooms the plan.
metastable said:
Assuming this is true then how does the marble in the video reach the other side quicker? (the one that spends time at lower altitude).
The marble arrives sooner, but assuming no losses, it end ups with the same energy as the marble traveling along the straight path. With aerodynamic drag losses, the faster marble ends up with less energy (slower speed) once it returns to the original height. The "negative work" done by drag = force · distance, so the higher speed and higher drag path involves more "negative work".
For an example of energy consumed to maintain constant speed, assume there's a speed of maximum efficiency. For example, say a gasoline fueled car gets it's best fuel mileage at 45 mph, and is restricted to constant power output, so any change in speed will be due to a slope. If the initial == final speed is greater than 45 mph, then it would be more efficient to climb to a point where the speed is reduced to 45 mph, then at the end of the elevated straight, descend back to the initial speed. If the initial == final speed is less than 45 mph, then it's more efficient to descend to 45 mph, then climb back up at the end to the initial speed. Neither of theses cases are oberth effect.
Oberth effect works in space (zero velocity related losses) because a decrease in GPE coexists with an increase of KE of the remaining fuel, which could be compressed air in a tank. If operating in an atmosphere, the drag increases with the square of the speed, so when the GPE is decreased, the increase in speed and KE of the remaining fuel is less due to drag, and since the drag is increased by the square of the speed, a greater amount of thrust is required. Seems like there is probably an ideal speed for maximum efficiency, and the path could be used to increase or decrease speed to the ideal speed as noted above, taking the Oberth effect into account, but I haven't done the math.