Laplace expansion of the inner product (Geometric Algebra)

NoPhysicsGenius
Messages
58
Reaction score
0

Homework Statement



Prove that ##\vec {a} \cdot (\vec {b} \wedge \vec {C_r}) = \vec {a} \cdot \vec {b} \vec {C_r} - \vec {b} \wedge (\vec {a} \cdot \vec {C_r})##.

Note that ##\vec {a}## is a vector, ##\vec {b}## is a vector, and ##\vec {C_r}## is an r-blade with ##r > 0##.

Also, the dot denotes the inner product, the wedge denotes the outer product, and no operator between vectors (or blades) denotes the geometric product.

Finally, the identity to be proven can be called the "Laplace expansion of the inner product".

Homework Equations



Equation (1a): ##\vec {a} \cdot \vec {b} = \frac {1}{2} (\vec {a} \vec {b} + \vec {b} \vec {a}) ##
## \Rightarrow ##
Equation (1b): ##\vec {a} \vec {b} = - \vec {b} \vec {a} + 2 \vec {a} \cdot \vec {b}##

Equation (2): ##\vec {a} \cdot \vec {A_r} = \frac {1}{2} (\vec {a} \vec {A_r} - (-1)^r \vec {A_r} \vec {a}) ##

Equation (3): ##\vec {b} \vec {C_r} = \vec {b} \cdot \vec {C_r} + \vec {b} \wedge \vec {C_r} ##

The Attempt at a Solution



By Equation (1a), we have ##\vec {a} \vec {b} \vec {C_r} = (- \vec {b} \vec {a} + 2 \vec {a} \cdot \vec {b}) \vec {C_r} = - \vec {b} \vec {a} \vec {C_r} + 2 \vec {a} \cdot \vec {b} \vec {C_r}##

Note that Equation (2) implies ##2 \vec {a} \cdot \vec {C_r} = \vec {a} \vec {C_r} - (-1)^r \vec {C_r} \vec {a} \Rightarrow \vec {a} \vec {C_r} = (-1)^r \vec {C_r} \vec {a} + 2 \vec {a} \cdot \vec {C_r} ##

Therefore, ##\vec {a} \vec {b} \vec {C_r} = - \vec {b} [(-1)^r \vec {C_r} \vec {a} + 2 \vec {a} \cdot \vec {C_r}] + 2 \vec {a} \cdot \vec {b} \vec {C_r} ##
##\Rightarrow \frac {1}{2} \vec {a} \vec {b} \vec {C_r} = - \frac {1}{2} \vec {b} [(-1)^r \vec {C_r} \vec {a} + 2 \vec {a} \cdot \vec {C_r}] + \vec {a} \cdot \vec {b} \vec {C_r} ##
##\Rightarrow \vec {a} \cdot \vec {b} \vec {C_r} - \vec {b} \vec {a} \cdot \vec {C_r} = \frac {1}{2} [\vec {a} (\vec {b} \vec {C_r}) - (-1)^r (\vec {b} \vec {C_r}) \vec {a}] ##

Using the reverse of Equation (2), we get ##\vec {a} \cdot \vec {b} \vec {C_r} - \vec {b} \vec {a} \cdot \vec {C_r} = \vec {a} \cdot (\vec {b} \vec {C_r}) ##

Applying Equation (3), we have ##\vec {a} \cdot \vec {b} \vec {C_r} - \vec {b} \vec {a} \cdot \vec {C_r} = \vec {a} \cdot (\vec {b} \cdot \vec {C_r} + \vec {b} \wedge \vec {C_r}) = ##
##\vec {a} \cdot (\vec {b} \cdot \vec {C_r}) + \vec {a} \cdot (\vec {b} \wedge \vec {C_r})##

##\Rightarrow \vec {a} \cdot (\vec {b} \wedge \vec {C_r}) = \vec {a} \cdot \vec {b} \vec {C_r} - \vec {b} \vec {a} \cdot \vec {C_r} - \vec {a} \cdot (\vec {b} \cdot \vec {C_r}) ##

This is where I got stuck. Somehow, the r-vector part of this last equation gives the desired identity; but I don't know how...
 
Physics news on Phys.org
With equation (3) you directly get, that the statement is equivalent to ##\vec{a}\cdot (\vec{b}\cdot \vec{C_r})=\vec{b}\wedge (\vec{a}\cdot\vec{C_r})\,##?
 
fresh_42 said:
With equation (3) you directly get, that the statement is equivalent to ##\vec{a}\cdot (\vec{b}\cdot \vec{C_r})=\vec{b}\wedge (\vec{a}\cdot\vec{C_r})\,##?

I am confused. To finish my proof, I must show that ##- \vec {b} \wedge ( \vec {a} \cdot \vec{C_r} ) = - \vec {b} \vec {a} \cdot \vec {C_r} - \vec {a} \cdot ( \vec {b} \cdot \vec {C_r} ) ##
##\Rightarrow \vec {b} \wedge ( \vec {a} \cdot \vec{C_r} ) = \vec {b} \vec {a} \cdot \vec {C_r} + \vec {a} \cdot ( \vec {b} \cdot \vec {C_r} ) ##.

Does ##\vec {b} \vec {a} \cdot \vec {C_r} ## equal zero?
 
NoPhysicsGenius said:
I am confused. To finish my proof, I must show that ##- \vec {b} \wedge ( \vec {a} \cdot \vec{C_r} ) = - \vec {b} \vec {a} \cdot \vec {C_r} - \vec {a} \cdot ( \vec {b} \cdot \vec {C_r} ) ##
##\Rightarrow \vec {b} \wedge ( \vec {a} \cdot \vec{C_r} ) = \vec {b} \vec {a} \cdot \vec {C_r} + \vec {a} \cdot ( \vec {b} \cdot \vec {C_r} ) ##.

Does ##\vec {b} \vec {a} \cdot \vec {C_r} ## equal zero?
I don't know. I simply used your equation (3) to get rid of the geometric product in your assertion and ended up with one which is likely wrong. The only other thing I used was distributivity of the dot product.
 
Back
Top