Laplace Transform of f(t): Find Solutions

bengaltiger14
Messages
135
Reaction score
0

Homework Statement




Find the Laplace Transform of: f(t) = {t, 0<t<1
2, 1<t<2
t^2, 2<=t<=3 }

For the first case (t), I get 1/(s^2) for the eqn. t^n = n!/s^(n+1)

For the second case (2), I get 2/s

For the third case (t^2), I get 2/s^3

Do these look ok? The given range kinda threw me off so I was not sure If I did them correctly.
 
Physics news on Phys.org
Disregard that, I approached it entirely wrong. Sorry
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top