Laplace transform to solve a nonhomogeneous equation

victor77
Messages
6
Reaction score
0
Mod note: Moved from a Homework section
can i use the Laplace transform to solve a nonhomogeneous equation if
i have these Initial condition s(x) and s(-x)
 
Last edited by a moderator:
Physics news on Phys.org
Hi,
A first order differential equation only needs one initial condition, so the two you have might contradict each other.
A second order needs two. One per differential. So if you have two for the differentiation wrt x only, you are back to the previous problem. And you still don't have anything for ##{d\over dx}({d\over dx})##
 
victor77 said:
Mod note: Moved from a Homework section
can i use the Laplace transform to solve a nonhomogeneous equation if
i have these Initial condition s(x) and s(-x)

Looks like you have a boundary value problem not initial value problem. If your DE is a linear constant coefficient, I think you still can solve it with Laplace transform.
 
matematikawan said:
Looks like you have a boundary value problem not initial value problem. If your DE is a linear constant coefficient, I think you still can solve it with Laplace transform.

You have to use power series solutions, if the coefficients are non constant. This is just a guess, because you have not posted the DE you have questions on.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...

Similar threads

Back
Top