The function [tex] u(r,\theta) [/tex](adsbygoogle = window.adsbygoogle || []).push({});

satisfies Laplace's equation in the wedge [tex] 0 \leq r \leq a, 0 \leq \theta \leq \beta [/tex]

with boundary conditions [tex] u(r,0) = u(r,\beta) =0, u_r(a,\theta)=h(\theta) [/tex]. Show that

[tex] u(r,\theta) = \sum_{n=0}^\infty A_nr^{n\pi/\beta}sin(\frac{n\pi\theta}{\beta}) [/tex]

[tex]A_n=a^{1-\frac{n\pi}{\beta}\frac{2}{n\pi}\int_{0}^{\beta}h(\theta)sin\frac{n\pi\theta}{\beta}d\theta [/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Laplaces equation in polar coordinates

**Physics Forums | Science Articles, Homework Help, Discussion**