Prove Laplacian of Dyad: Indicial Notation

  • Thread starter Thread starter ganondorf29
  • Start date Start date
  • Tags Tags
    Laplacian
ganondorf29
Messages
49
Reaction score
0

Homework Statement


[/B]
Given the dyad formed by two arbitrary position vector fields, u and v, use indicial notation in Cartesian coordinates to prove:

$$\nabla^2 ({\vec u \vec v}) = \vec v \nabla^2 {\vec u} + \vec u \nabla^2 {\vec v} + 2\nabla {\vec u} \cdot {(\nabla \vec v)}^T
$$

Homework Equations


[/B]
Per my professor's notes, the Laplacian of a dyad (also a tensor) is given as:
$$
\nabla^2 {\mathbf {S}} = \nabla \cdot {S_{ij,k} \mathbf{e_{i}e_{j}e_{k}}} = S_{ij,kk} \mathbf{e_{i}e_{j}}
$$

The Attempt at a Solution


[/B]
$$
\nabla^2 {\mathbf {uv}} = (u_{i}v_{j})_{,kk} = u_{i,kk}v_{j} + u_{i}v_{j,kk} \\
u_{i,kk}v_{j} + u_{i}v_{j,kk} = \vec v \nabla^2 {\vec u} + \vec u \nabla^2 {\vec v}
$$I don't know where the following terms come from:
$$
2\nabla {\vec u} \cdot {(\nabla \vec v)}^T
$$

Does anyone have any suggestions? I feel that I am missing a step or something.
 
Physics news on Phys.org
ganondorf29 said:

Homework Statement


[/B]
Given the dyad formed by two arbitrary position vector fields, u and v, use indicial notation in Cartesian coordinates to prove:

$$\nabla^2 ({\vec u \vec v}) = \vec v \nabla^2 {\vec u} + \vec u \nabla^2 {\vec v} + 2\nabla {\vec u} \cdot {(\nabla \vec v)}^T
$$

Homework Equations


[/B]
Per my professor's notes, the Laplacian of a dyad (also a tensor) is given as:
$$
\nabla^2 {\mathbf {S}} = \nabla \cdot {S_{ij,k} \mathbf{e_{i}e_{j}e_{k}}} = S_{ij,kk} \mathbf{e_{i}e_{j}}
$$

The Attempt at a Solution


[/B]
$$
\nabla^2 {\mathbf {uv}} = (u_{i}v_{j})_{,kk} = u_{i,kk}v_{j} + u_{i}v_{j,kk} \\
u_{i,kk}v_{j} + u_{i}v_{j,kk} = \vec v \nabla^2 {\vec u} + \vec u \nabla^2 {\vec v}
$$I don't know where the following terms come from:
$$
2\nabla {\vec u} \cdot {(\nabla \vec v)}^T
$$

Does anyone have any suggestions? I feel that I am missing a step or something.
I'm not good with coordinates, so I leave this up to you.
But ##\nabla (\mathbf{u}\mathbf{v}) = \mathbf{u}(\nabla \mathbf{v}) + (\nabla \mathbf{u})\mathbf{v}## and the next differentiation gives you the third term (twice).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top