Laplacian solution(page 2) to Jackson 1.5

  • Thread starter Thread starter daudaudaudau
  • Start date Start date
  • Tags Tags
    Jackson Laplacian
daudaudaudau
Messages
297
Reaction score
0
Hi.

In http://www-personal.umich.edu/~pran/jackson/P505/p1s.pdf" solution(page 2) to Jackson 1.5 it is stated that

\nabla^2 \left(\frac{1}{r}\right)=-4\pi\delta^3(\mathbf r).

But why is this true?

\nabla^2\left(\frac{1}{r}\right)=\frac{1}{r^2}\frac{d}{d r}\left(r^2\frac{d}{dr}\frac{1}{r}\right)=\frac{1}{r^2}\frac{d}{dr}(-1)
 
Last edited by a moderator:
Physics news on Phys.org


This equality is to be understood in the distributional sense. It should be read as:

\int \frac{\Delta \phi}{|x|}\, \mathrm{d}x = -4\pi \phi (0), \qquad \forall \phi \in C^{\infty}_c (\mathbf{R}^3)

:)
 

Similar threads

Back
Top