Largest Rectangle Inscribed in Parabola

disfused_3289
Messages
12
Reaction score
0
Find the area of the largest rectangle that can be inscribed in the region bounded by the parabola with equation y= 4 - x^2
 
Physics news on Phys.org
I find it difficult to believe that this is not homework and so belongs in the "homework section". I will move it. Also you are expected to show what you have tried.

Are you allowed to assume that the rectangle has horizontal and vertical sides? It can be proved that the largest rectangle must be that way butnot so easy to prove.

Assuming that, take one vertex at (x0,0) (Since it is inscribed in the figure, if one side is horizontal, two vertices must be on the x-axis). It should be easy to see by symmetry that the other vertex must be (-x0, 0). Do you see that the "upper" vertices then are at (x0, 4-x02) and (x0, 4- x02)?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top