1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Last vector-plane problem for the night

  1. Oct 30, 2006 #1
    I would like to show that two planes are || and then find the distance between the two planes. I think I have the distance between the two planes covered pretty good, but I am not sure about the || part.

    For example:

    [tex]P_1[/tex] = 4x-2y+6z=3 and [tex]P_2[/tex] = -6x+3y-9z=4

    then [tex]\vec{n}P_1[/tex] = <4,-2,6> and [tex]\vec{n}P_2[/tex] = <-6,3,-9>. So, my thinking is that if these two planes were || then they should have the same normal vector or at least a multiple of that normal vector. Is this correct, should I be looking at something else as well?
  2. jcsd
  3. Oct 30, 2006 #2


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    P2 is: -3/2* (4x-2y+6z) = 4

    Or 4x-2y+6z = -8/3

    Does that help?
  4. Oct 30, 2006 #3


    User Avatar
    Science Advisor

    Yes, that's correct. And, just as obviously, as Office_Shredder showed, one is a multiple of the other. Now, to find the distance between them, pick any point in one plane, find the line through that point perpendicular to the plane (in the direction of the normal vector), find the point where that line intersects the other plane, and find the distance between the two points.
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Similar Discussions: Last vector-plane problem for the night
  1. Vector Plane Problem (Replies: 1)