Law of sines: Unambiguous case

  • Context: MHB 
  • Thread starter Thread starter SweatingBear
  • Start date Start date
  • Tags Tags
    Law Law of sines
Click For Summary

Discussion Overview

The discussion revolves around the application of the Law of Sines and the Law of Cosines in determining the angles and sides of a triangle given two sides and the included angle. Participants explore the implications of these laws when faced with ambiguous cases in triangle construction.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant asserts that a triangle should be unambiguously defined with two sides and the included angle, referencing geometric congruence principles.
  • Another participant calculates the length of side BC using the Law of Cosines and finds two possible angle configurations using the Law of Sines, leading to ambiguity.
  • One participant questions why their approach of calculating only one angle and assuming the angle sum is 180 degrees led to confusion in this specific case.
  • A later reply suggests that both possible values for each unknown angle should be considered before determining which combination satisfies the triangle angle sum condition.

Areas of Agreement / Disagreement

Participants express differing views on the unambiguity of triangle definitions under the given conditions, with some acknowledging the potential for multiple valid configurations while others maintain that a unique triangle should exist.

Contextual Notes

There is a noted reliance on the sine identity, which can lead to multiple angle solutions, and the discussion highlights the importance of checking the sum of angles to ensure they conform to triangle properties.

SweatingBear
Messages
119
Reaction score
0
Hello again, forum.

Is it not true that a triangle is unambiguously defined given two sides and the intermediate angle? That is at least what I learned from studying congruence in geometry. Here's the problem: We have the triangle below (the picture is given in the problem and I have redrawn it) and are asked to find the measurement of the other two angles and the side BC.

9uvDM62.png


Now, intuitively, there is only one possible length for BC for which a triangle can be constructed. The angle at C is fixed because changing that very angle would change the length of BA (which is given and thus constrained). Similar arguments apply to angle B.

From these arguments, it is reasonable to expect only one possible triangle from the given data. To start off we can use law of cosines to determine |BC| and from thereon make use law of sines.

The problem though is when I apply the law of sines in order to compute the other two angles, I am able to form two different triangles with different measurements of their angles.

Triangle #1: $$\angle A = 23.8^\circ$$, $$\angle B = 34.3^\circ$$ and $$\angle C = 121.9^\circ$$.

triangle 23.8°,34.3°,121.9° - Wolfram|Alpha

Triangle #2: $$\angle A = 23.8^\circ$$, $$\angle B = 145.7^\circ$$ and $$\angle C = 10.5^\circ$$.

triangle 10.5°,23.8°,145.7° - Wolfram|Alpha

Now this is very strange, I have not come across a triangle (with two given sides and the intermediate angle) which is not unambiguously defined until now. How is this even possible? Clearly in triangle #2, it is not possible for the angle at B to equal 145.7 degrees since this would change the length of AC. But the algebra does not "see" that, simply due to $$\sin (180^\circ - v) \equiv \sin (v)$$.

So, forum, how do we resolve this issue? Help much appreciated!
 
Mathematics news on Phys.org
I would first use the Law of Cosines to determine:

$$\overline{BC}\approx4.264311887306$$

Then using the Law of Sines, I find:

$$\angle C\approx34.6^{\circ},\,145.4^{\circ}$$

$$\angle B\approx58.4^{\circ},\,121.6^{\circ}$$

The only combination which has the sum of the thee angles as $$180^{\circ}$$ is:

$$\angle A=23.8^{\circ},\,\angle B\approx121.6^{\circ},\,\angle C\approx34.6^{\circ}$$
 
Thanks for the reply!

The only difference between my and your approach is that you calculated every angle in the triangle using law of sines, whereas I calculated only one angle and the final one assuming the angle sum is 180. Why exactly did my approach fail in this case? I have had no issues with it before until this very problem.
 
I was taught, in this case, to look for both possible values of each of the two unknown angles via the sine identity you cited, and only then to look for that combination of angles who sum is $180^{\circ}$.
 
Seemingly a much better approach than mine. Thanks a heap!
 

Similar threads

Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K
Replies
2
Views
1K
Replies
2
Views
2K