Lenz's Law for a rotating PM motor rotor spinning in a thin CU tube

AI Thread Summary
The discussion revolves around the challenges of adding a thin-walled copper tube inside a stator bore to provide damping for a rotating permanent magnet motor. Concerns are raised about insufficient clearance between the rotor and the copper insert, which could affect motor operation. Alternatives to traditional damping windings are explored, including using circuitry to switch a resistor across non-energized windings or ramping stator current to achieve similar damping effects. The feasibility of these options is debated, with a preference for simpler solutions. Overall, the integration of the copper tube and potential modifications to the motor's electronics are critical to achieving effective damping.
Neumahn
Messages
2
Reaction score
0
TL;DR Summary
I am trying to determine the damping generated by spinning a motor rotor in a thin-walled copper tube. This is a stepper motor with 40 magnets radially charged along the circumference.
The motor is required to operate at its resonance frequency and I am looking to add a thin-walled (0.010") copper tube inside the stator bore to add some damping. The current motor air-gap is 0.015". If I install a copper tube in the stator bore bonded to the stator and leave a 0.005" air-gap between the tube and the rotor how would I calculate the damping torque as a function of motor speed?

Normally we could install a damping winding but these motors are already built and there is no room for a damping coil.

Thank you,

Neumahn
 
Last edited by a moderator:
Engineering news on Phys.org
Welcome to PF.

The 15 thou clearance is probably needed for bearing movement and wear. You will probably be left with insufficient clearance, so the motor poles will connect with the copper insert.

With a copper sleeve in the gap the motor will probably not operate like a stepper motor. The copper sleeve would be driven like an induction motor. Could you short circuit the existing windings while they are not being driven to provide the required damping?
 
No, the electronics are open on the redundant winding and we have no control over them. The other option being considered is making new stators and adding a third damping coil. This is a painful option as it requires considerable schedule.
 
You could probably get away with the Copper sleeve but only at slow step rates. The Copper will act like a single shorted-turn secondary of the stator windings. Since a transformer operates only on a varying current, once the current settles the Cu will have no effect on the field windings and will allow the the static magnetic field to reach the rotor.

You could get a similar effect by slowly ramping the stator current. This would not necessarily require a change in the drive electronics, as you could put an Integrator circuit between the windings and the existing electronics. That may or may not be cheaper than modifying the motor.

Alternatively, you could put circuitry between the windings and the existing electronics to switch a resistor across the non-energized windings, using them as a damping winding.

The above has been a stream-of-consciousness. The last option seems the simplest.

Cheers,
Tom

p.s. be aware that dis-assembling a stepper motor often means a significant decrease performance. Something to do with altering the magnetic characteristics.
 
Neumahn said:
If I install a copper tube in the stator bore bonded to the stator
As I understand it, a two or three phase stepper motor is being run as a synchronous motor.

The damping windings are used to start rotation as an induction motor until the PM poles of the rotor synchronously lock to the rotating stator field.

That suggests a squirrel cage of damping windings should be installed in the PM rotor, NOT in the stator poles of the phase windings.
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I am not an electrical engineering student, but a lowly apprentice electrician. I learn both on the job and also take classes for my apprenticeship. I recently wired my first transformer and I understand that the neutral and ground are bonded together in the transformer or in the service. What I don't understand is, if the neutral is a current carrying conductor, which is then bonded to the ground conductor, why does current only flow back to its source and not on the ground path...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Back
Top