Leptonic-Hadronic Tensor Multiplication Proof with Rest and Final Target Momenta

  • Thread starter Thread starter Muh. Fauzi M.
  • Start date Start date
  • Tags Tags
    Exercise
Muh. Fauzi M.
Messages
17
Reaction score
1

Homework Statement


Proof the leptonic-hadronic tensor multiplication, with ##p^\mu=(M,\textbf{0})## and ##p'^\mu=(E',\textbf{p}')## is rest target and final target momentum respectively, and ##k^\mu=(\omega,\textbf{k})##, ##k'\mu=(\omega'
,\textbf{k}')## is momenta of incoming and outgoing electron, hence we get

$$L_{\mu\nu}T^{\mu\nu}=8\Big(2(k\cdot p)(k'\cdot p)+\frac{q^2}{2M^2}\Big)$$

Homework Equations



The hadronic tensor,
$$T^{\mu\nu}=(p+p')^\mu(p+p')^\nu$$

The leptonic tensor,
$$L_{\mu\nu}=2\Big(k'_\mu k\nu+k'_\nu k_\mu + \frac{1}{2}q^2g_{\mu\nu}\Big)$$.

The Attempt at a Solution



I try something like this

$$ L_{\mu\nu}T^{\mu\nu} = 2\Big(k'_\mu k_\nu+k'_\nu k_\mu + \frac{1}{2}q^2g_{\mu\nu}\Big) (p+p')^\mu(p+p')^\nu $$

Expanding the second term in the rhs

$$ L_{\mu\nu}T^{\mu\nu} = 2\Big(k'_\mu k_\nu+k'_\nu k_\mu + \frac{1}{2}q^2g_{\mu\nu}\Big) (p^\mu p^\nu + p^\mu p'^\nu + p'^\mu p^\nu + p'^\mu p'^\nu) $$

hence,

$$ L_{\mu\nu}T^{\mu\nu} = 2 \Big[ (k' \cdot p)(k \cdot p) + 2 (k'\cdot p)(k \cdot p') + (k' \cdot p')(k \cdot p') + (k' \cdot p)(k \cdot p) + 2 (k'\cdot p')(k \cdot p) + (k' \cdot p')(k \cdot p') + \frac{1}{2}q^2 (p^\mu p^\nu + p^\mu p'^\nu + p'^\mu p^\nu + p'^\mu p'^\nu) \Big] $$
 
  • Like
Likes GW150914
Physics news on Phys.org
I think Greiner missprint the result. I've finally got the contraction result:

$$ L_{\mu\nu}=8\Big(2(k\cdot p)(k'\dot p)+\frac{1}{2}q^2 M^2\Big) ,$$

and if I use the relativistic limit, my result is confirmed.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top