arindamsinha said:
I don't get the difference between the LHC particle and cosmic muon in the above. Surely the LHC particle is entitled to think that the tunnel it is traveling has become extremely short, just like the cosmic muon does about its distance to the Earth surface?
No. There are a number of ways to see the difference. It think the simplest, which I already clearly described, is:
The atmospheric muon never gets to compare its 'clock' repeatedly to the same Earth clock. The particle in a ring does. Each time it passes the same hypothetical clock on the ring it sees the ring clock further and further ahead, i.e. faster. There is no interpretation that it make to say the clock it repeatedly encounters and sees running ahead is really slower. There is no doppler, simultaneity, length conrraction, or time dilation interpretation that is involved - you have a direct comparison of co-located clocks. This makes it analagous to the invariant differential aging of the twin paradox, rather than the symmetric time dilation between relatively moving inertial frames.
I think we've gone over this in different threads: you have to let go of any notion that an non-inertial path is equivalent to an inertial path. This is false both in SR and GR.
Another is that the muon never changes inertial frames. The particle in the ring has, at every point around the ring, a different instantly comoving inertial frame, with different simultaneity. This is fundamentally different from the fixed simultaneity for the muon. If you build a coordinate system in which the ring particle is at rest, is has a different metric from the standard Minkowski metric. Using this metric, the ring particle would compute that a lab clock is running fast on average, not slow.
[Edit: Is it possible you didn't know the LHC is a ring? However, even if we talk about a linear accelerator, the situation is different from the atmospheric muon case, in that acceleration is involved. All three of these cases (muon, LINAC, LHC) look similar from Earth lab frame; however, each is quite different from the particle's point of view. ]