LHC and SUSY Aug 2010 results, implications for string theory

ensabah6
Messages
691
Reaction score
0
LHC thus far has ruled out some of the SUSY parameter space over and above Tev, esp gluinos above a certain mass.

So LHC has offered some useful research into SUSY. Were SUSY gluinos detected it would be a huge boost to strings/Supergravity Beyond the Standard Model

http://arxiv.org/abs/1008.0407

High Energy Physics - Phenomenology
Title: It's On: Early Interpretations of ATLAS Results in Jets and Missing Energy Searches
Authors: Daniele S. M. Alves, Eder Izaguirre, Jay G. Wacker
(Submitted on 2 Aug 2010)

Abstract: The first search for supersymmetry from ATLAS with 70/nb of integrated luminosity sets new limits on colored particles that decay into jets plus missing transverse energy. For gluinos that decay directly or through a one step cascade into the LSP and two jets, these limits translate into a bound of m_g > 205 GeV, regardless of the mass of the LSP. In some cases the limits extend up to m_g ~= 295 GeV, already surpassing the Tevatron's reach for compressed supersymmetry spectra.

Comments: 5 pages, 3 figures, 1 table
Subjects: High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Experiment (hep-ex)
Cite as: arXiv:1008.0407v1 [hep-ph]LHC is not only experimental search for SUSY, dark matter detectors also weigh inhttp://arxiv.org/abs/1005.0761
SUSY dark matter in light of CDMS II results: a comparative study for different models
Authors: Junjie Cao, Ken-ichi Hikasa, Wenyu Wang, Jin Min Yang, Li-Xin Yu
(Submitted on 5 May 2010)

Abstract: We perform a comparative study of the neutralino dark matter scattering on nucleon in three popular supersymmetric models: the minimal (MSSM), the next-to-minimal (NMSSM) and the nearly minimal (nMSSM). First, we give the predictions of the elastic cross section by scanning over the parameter space allowed by various direct and indirect constraints, which are from the measurement of the cosmic dark matter relic density, the collider search for Higgs boson and sparticles, the precision electroweak measurements and the muon anomalous magnetic moment. Then we demonstrate the property of the allowed parameter space with/without the new limits from CDMS II. We obtain the following observations: (i) For each model the new CDMS limits can exclude a large part of the parameter space allowed by current collider constraints; (ii) The property of the allowed parameter space is similar for MSSM and NMSSM, but quite different for nMSSM; (iii) The future SuperCDMS can cover most part of the allowed parameter space for each model.
 
Physics news on Phys.org
ensabah6 said:
The first search for supersymmetry from ATLAS with 70/nb of integrated luminosity
Still no sign of supersymmetry, now with a million times more integrated luminosity and higher energy. If it exist it must be at higher energies or have a really weak coupling to our matter.
 
I seem to notice a buildup of papers like this: Detecting single gravitons with quantum sensing. (OK, old one.) Toward graviton detection via photon-graviton quantum state conversion Is this akin to “we’re soon gonna put string theory to the test”, or are these legit? Mind, I’m not expecting anyone to read the papers and explain them to me, but if one of you educated people already have an opinion I’d like to hear it. If not please ignore me. EDIT: I strongly suspect it’s bunk but...
I'm trying to understand the relationship between the Higgs mechanism and the concept of inertia. The Higgs field gives fundamental particles their rest mass, but it doesn't seem to directly explain why a massive object resists acceleration (inertia). My question is: How does the Standard Model account for inertia? Is it simply taken as a given property of mass, or is there a deeper connection to the vacuum structure? Furthermore, how does the Higgs mechanism relate to broader concepts like...
Back
Top